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The subject of this lecture is the stability of black holes, which are
certain Lorentzian manifolds solving Einstein’s equation – I will
mostly discuss what these black holes are, what stability means
and some geometric/physical input into its solution.

We adopt the convention that Lorentzian metrics on an
n-dimensional manifold have signature (1, n − 1). For instance, the
Minkowski metric on R4 = R1+3, with coordinates z0, z1, z2, z3, is

g = dz20 − dz21 − dz22 − dz23 .

Here z0 is ‘time’, (z1, z2, z3) ‘space’, but there are many other
timelike and spacelike coordinate functions on it! Here f timelike
means g−1(df , df ) > 0, spacelike means g−1(df , df ) < 0.
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In 4 dimensions Einstein’s equation in vacuum is an equation for
the metric tensor of the form

Ric(g) + Λg = 0,

where Λ is the (given) cosmological constant, and Ric(g) is the
Ricci curvature of the metric. If there were matter present, there
would be a non-trivial right hand side of the equation, given by (a
modification of) the matter’s stress-energy tensor.

In local coordinates, the Ricci curvature is a non-linear expression
in up to second derivatives of g ; thus, this is a partial differential
equation. Only a few properties of Ric matter for our purposes; we
point these out later.
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The type of PDE that Einstein’s equation is most similar to (with
issues!) are (tensorial, non-linear) wave equations. The typical
formulation of such a wave equation is that one specifies ‘initial
data’ at a spacelike hypersurface, such as z0 = C , C constant, in
Minkowski space. For linear wave equations □u = f on spaces like
R1+3, where □ = d∗d = D2

z0 − D2
z1 − D2

z2 − D2
z3 , the solution u for

given data exists globally and is unique.

The analogue of the question how solutions of Einstein’s equation
behave is: if one has a solution u0 of □u = 0, say u0 = 0 with
vanishing data, we ask how the solution u changes when we
slightly perturb data (to be still close to 0). For instance, does u
stay close to u0 everywhere? Does it perhaps even tend to u0 as
z0 → ∞? This is the question of stability of solutions.

Since one cannot expect that the universe is given by some explicit
solution of Einstein’s equation, even if it is close to it, answering
this question is of great importance.
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Now, Ric is diffeomorphism invariant, so if Ψ is a diffeomorphism,
and g solves Einstein’s equation, then so does Ψ∗g . This means
that if there is one solution, there are many (even with same IC).
In practice (duality) this means that it may not be easy to solve
the equation at all! (Cf. linear algebra: surjectivity ⇔ the adjoint
is injective.)

Thus, Einstein’s equation is not quite a wave equation, but it can
be turned into one by imposing extra gauge conditions. Concretely,
imposing that the local coordinates solve wave equations enabled
Choquet-Bruhat to show local well-posedness in the 1950s. A
closely related version, is DeTurck’s trick – more on this later.
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Turning to global questions: the first stability results were obtained
for Minkowski space and de Sitter space, respectively, and are due
to Christodoulou and Klainerman (1990s), later simplified by
Lindblad and Rodnianski (2000s) (and extended by Bieri and
Zipser), resp. Friedrich (1980s). In the late 2010s Hintz-V. gave a
different proof that provided a full asymptotic expansion
(polyhomogeneous, with logarithmic terms) of the metric.

The first main result, joint with Peter Hintz, in this lecture is the
global non-linear asymptotic stability of the Kerr-de Sitter family
for the initial value problem for small angular momentum a
(Λ > 0). The second main result with Dietrich Häfner and Peter
Hintz is the analogus linearized stability of the Kerr family for
small a (Λ = 0).

These are a family of metrics depending on two parameters, called
mass m and angular momentum a (as well as the cosmological
constant Λ), whose geometric features we explore at first.
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We will discuss both Λ = 0 and Λ > 0, though we focus on the
latter as the results are more complete then. We remark that the
observed accelerating expansion of the universe is consistent with a
positive cosmological constant, which plays the role of a positive
vacuum energy density; indeed, in theoretical physics Λ > 0 is what
plays a dominant role.

Roughly, Λ > 0 is the geometer’s problem, as it has all the
interesting black hole features without serious analytic
complications, while Λ = 0 is the analyst’s problem as most of the
additional difficulties are ultimately of analytic nature.

While physically Λ > 0 is small, on the scale of stability, i.e. ‘time
tends to ∞’ behavior, there is no such thing as small Λ: on the
relevant time scale the only relevant distinction is whether Λ is
zero, or it is positive.
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The simplest solution of Einstein’s equation with Λ = 0 is
Minkowski space, which is of course flat: it is the Lorentzian
version of Euclidean space.

Its counterpart in Λ > 0 is de Sitter space. This is a symmetric
space; it is a Lorentzian version of hyperbolic space.

A simple description is in terms of Minkowski space of one higher
dimension: n-dimensional de Sitter space dSn is the hyperboloid

z20 − (z21 + . . .+ z2n ) = −1

in Rn+1 with the Minkowski metric dz20 − (dz21 + . . .+ dz2n ).
Pulling back the metric to dSn one obtains a signature (1, n − 1)
Lorentzian manifold which solves Einstein’s equation with
cosmological constant (n−1)(n−2)

2 . (Cf. hyperbolic space!)
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Figure: As a manifold, dSn = Rt∗ × Sn−1, where t∗ is given by an explicit
expression in terms of z0 (roughly log z0 for z0 ≫ 2); the metric is then
dt2∗ − (cosh2 t∗) h, h the round metric. Here n = 2.
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Another family of explicit solutions to Einstein’s equations with
Λ ≥ 0 (in 1 + 3 dimensions here) is the Schwarzschild, resp.
Schwarzschild-de Sitter (SdS) family of metrics depending on a
parameter, called mass m > 0:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 h, µ(r) = 1− 2m

r
− Λr2

3
,

h the metric on the 2-sphere, m > 0 a parameter.

Λ = 0 gives the Schwarzschild metric, discovered about a
month after Einstein’s 1915 paper; Λ > 0 is the SdS metric.

Depending on Λ, m = 0 gives the Minkowski/de Sitter metric
in different coordinates.

Thus, this family describes a black hole in Minkowski/de
Sitter space in a certain sense.
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Recall:

g = µ(r) dt2 − µ(r)−1 dr2 − r2 h, µ(r) = 1− 2m

r
− Λr2

3
.

µ(r) = 0 has two positive solutions r+, r− if m,Λ > 0 and
9Λm2 < 1 (SdS); if Λ = 0, m > 0, the only root is r− = 2m
(Schw); if m = 0, Λ > 0, the only root is r+ =

√
3/Λ (dS).

In this form the metric makes sense where µ > 0:
Rt × (r−,∞)r × S2 (Λ = 0), resp. Rt × (r−, r+)r × S2 (Λ > 0).

It is spherically symmetric,

∂t is a Killing vector field, i.e. translation in t preserves the
metric.



The setup Geometry Stability The proof Outlook The gauge fixing

It is not hard to see that r = r± are coordinate singularities.

A better coordinate than t is, with c± smooth,

t∗ = t − F (r), F ′(r) = ±(µ(r)−1 + c±(r)) near r = r±.

In the coordinates (t∗, r , ω), the metric makes sense (as a
Lorentzian metric) on

Rt∗ × (0,∞)r × S2ω,

thus for r ≤ r− and r ≥ r+ as well.

r = r− is called the event horizon, r = r+ the cosmological horizon
(if Λ > 0); the geometry of the spacetime is very similar at these.
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The Schwarzschild/SdS metric fits into an even bigger family
discovered by Kerr and Carter in the 1960s: the Kerr/Kerr-de
Sitter family of metrics depending on 2 parameters, called mass m
and angular momentum a; a = 0 gives the
Schwarzschild/Schwarzschild-de Sitter metric.

Without specifying the general Kerr(-de Sitter) metric, we just
mention that the underlying manifold is still Rt∗ × (0,∞)r × S2,
and ∂t∗ is a Killing vector field, i.e. translation in t∗ preserves the
metric. These metrics are axisymmetric around the axis of
rotation; in the case a = 0 they are spherically symmetric (like the
de Sitter metric). There are restrictions on a to preserve the
geometric features; if Λ = 0, this is |a| < m; if Λ > 0 they are more
complicated.
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To better understand the relationship between the spaces for
Λ > 0, it is useful to conformally compactify dS4 = R× S3 by
compactifying R to an interval. Here we concentrate on z0 ≥ 1;
then τ = z−1

0 , adding τ = 0 as infinity, the metric is roughly like

τ−2(dτ2 − h),

h a metric on the sphere, and τ being essentially e−t∗ .
(‘Conformally compact’; cf. the Riemannian analogue, the Poincaré
model of hyperbolic space.)

A nice feature is that null-geodesics (geodesics with null, i.e.
g(V ,V ) = 0, tangent vectors V , geodesics are similar to the
Riemannian setting) are simply reparameterized by such a
conformal factor, i.e. they are essentially the same as those of
dτ2 − h.
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Figure: Left: the conformal compactification of de Sitter space dSn,
n = 2, with the backward light cone (null-geodesics) Ω+ from q+. The
red line is the path of an observer (or particle) who tends to q+. The
blue line is that of another who leaves Ω+... then no matter how
desperately she/he/it tries, cannot get back to it. Even the green
flashlight signal cannot make it back!!!
Right: the blow up of de Sitter space at q+. This desingularizes the tip
of the light cone, and the interior of the light cone inside the front face
ffq+ can be identified with a ball, which itself is a conformal
compactification of hyperbolic space Hn−1. The radial variable r for the
SdS presentation of dS is that of the ball; r = 1 is the light cone.
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The interior of the backward light cone from a point at τ = 0
(future infinity) can be identified with Rt∗ × B3; in the coordinates
(0,∞)r × S2 above, singular at r = 0, this is r < 1, often called
the static (region of) de Sitter space.

Notice that dS has the feature that if a forward timelike or lightlike
curve leaves the backward light cone, it can never return. Thus,
the lightcone, r = 1, acts as a horizon; it is called the cosmological
horizon.

Notice that nothing drastic happens at the horizons though; the
manifold and the metric continue smoothly across it!



The setup Geometry Stability The proof Outlook The gauge fixing

For KdS then we consider an analogue of this region, or rather that
of its slight enlargement r < 1 + ϵ.

Kerr-de Sitter space has two such horizons, at r = r±, with r+
called the cosmological horizon, r− the black hole event horizon.
They are extremely similar: once one leaves, one cannot return
along timelike or lightlike curves.

There is one more relevant null-feature of KdS: there are some
trapped null-geodesics in the exterior region r ∈ (r−, r+), i.e.
null-geodesics that do not cross either horizon. (This does not
happen in dS.) This is the photonsphere in SdS, deformed in KdS.
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Figure: Setup for the initial value problem for perturbations of a
Schwarzschild–de Sitter spacetime (M, gb0), showing the Cauchy surface
Σ0 of Ω and a few translates (level sets of the nonsingular time t∗) Σt∗ ;
here ϵM > 0 is small. Left: Product-type picture, illustrating the
stationary nature of gb0 . Right: Penrose diagram of the same setup. The
event horizon is H+ = {r = r−}, the cosmological horizon is
H+ = {r = r+}, and the (idealized) future timelike infinity is i+.
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Kerr behaves completely analogously to KdS near the event
horizon. The key difference is the presence of the Minkowski
infinity. For this purpose it is useful to have a time function t that
is equal to t∗ near the event horizon (i.e. r close to r−), and is
equal to the standard t for r large. Then the underlying manifold
is still Rt × (0,∞)r × S2.

Σ◦
0

t−1
∗ (c)

i0

i+

H+

I +

Figure: Part of the Penrose diagram of a Kerr spacetime: the event
horizon H+, null infinity I +, timelike infinity i+ and spacelike infinity i0.
We show the domain {t ≥ 0} inside of M◦ in gray, the Cauchy surface
Σ◦

0 = t−1(0), and a level set of t∗; t∗ = t − (r +2m log(r − 2m)), r large.
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We now return to the stability questions for Einstein’s equation.
Recall that one subtlety is the diffeomorphism invariance of the
equation, causing non-uniqueness; this invariance is the only cause
of non-uniqueness locally.

On the flipside, one cannot specify the initial data completely
arbitrarily: they need to satisfy certain equations, called the
constraint equations, implied by Einstein’s equation.

In general, for a manifold M with Σ0 a codimension 1
hypersurface, the initial data are a Riemannian metric h and a
symmetric 2-cotensor k which satisfy the constraint equations, and
one calls a Lorentzian metric g on M a solution of Einstein’s
equation with initial data (Σ0, h, k) if the pull-back of g to Σ0 is
−h, and k is the second fundamental form of Σ0 in M.
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For instance, a very roughly (and weakly!) stated version of
stability of Minkowski space R4

z , Σ0 = {0} × R3, due to
Christodoulou and Klainerman, is that given initial data (h, k)
close to (gEucl, 0) in an appropriate sense (in particular decaying),
there is a global solution of Einstein’s equation on R4, and it tends
to gMink as |z | → ∞.

The KdS stability is simplest phrased by considering a fixed
background Schwarzschild-de Sitter metric, gb0 , b0 = (m, 0), where
we use a ∈ R3 as the angular momentum parameter instead of the
scalar a. Let Σt∗ denote the translate of Σ0 by the ∂t∗ flow. Let

Ω = ∪t∗≥0Σt∗ .
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Theorem (Stability of the Kerr–de Sitter family for small a;
informal version, Hintz-V., arXiv 2016, published 2018)

Suppose (h, k) are smooth initial data on Σ0, satisfying the
constraint equations, which are close to the data (hb0 , kb0) of a
Schwarzschild–de Sitter spacetime in a high regularity norm. Then
there exist a solution g of Einstein’s equation in Ω attaining these
initial data at Σ0, and black hole parameters b which are close to
b0, so that

g − gb = O(e−αt∗)

for a constant α > 0 independent of the initial data; that is, g
decays exponentially fast to the Kerr–de Sitter metric gb.
Moreover, g and b are quantitatively controlled by (h, k).
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What the theorem states is that the metric ‘settles down to’ a
Kerr-de Sitter metric at an exponential rate. Note that even if we
perturb a Schwarzschild-dS metric, we get a KdS limit!

This ‘settling down’ means that gravitational waves are being
emitted; far away observers (hopefully us!) can see this ‘tail’.
LIGO exactly aimed (successfully!) at capturing these waves, using
numerical computations as a template to see what one would
expect from the merger of binary black holes.

Figure: LIGO/Virgo collaboration 2016
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While Λ > 0 is physically very small, and one may be tempted to
think that on the astrophysical scale it can be ignored, this does
not actually make sense as stability is on a ‘forever’ scale. Would
need effective quantitative estimates for Λ = 0 to be able to work
on a non-global scale and have implications for Λ > 0.

For Λ = 0, very recently (May 2022) a stability proof has been
posted by Giorgi, Klainerman, Szeftel; this is extremely long, and
at this point will need a lot of careful refereeing.

The next strongest nonlinear result is that of Dafermos, Holzegel,
Rodnianski and Taylor (2021) which is a finite codimension
Schwarzschild stability result; this followed the earlier restricted
(symmetry) stability result for Schwarzschild of Klainerman and
Szeftel (2017).
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Linearized Λ = 0 black hole results: Schwarzschild, plus Teukolsky
in the slowly rotating case: Dafermos, Holzegel and Rodnianski
(2016, 2017), as well as the stability result of Andersson,
Bäckdahl, Blue and Ma (2019), also in the slowly rotating case,
with also a more restricted general result, under a strong
asymptotic assumption, and the slowly rotating stability result of
Hintz-Häfner-V. (2019) which allows more slow decay on data.

Other works by Wald, Kay, Whiting, Finster, Kamran, Smoller,
Yau, Tataru, Tohaneanu, Marzuola, Metcalfe, Sterbenz,
Donninger, Schlag, Soffer, Sá Barreto, Wunsch, Zworski, Wang,
Bony, Dyatlov, Luk, Ionescu, Shlapentokh-Rothman, Giorgi,
Teixera da Costa, Casals...

For the following statement recall that at the linearized level
pullbacks by diffeomorphisms correspond to Lie derivatives along
vector fields.
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Theorem (Linearized stability of the Kerr family for small a;
informal version, Häfner-Hintz-V., arXiv 2019, published 2021)

Let b = (m, a) be close to b0 = (m0, 0); let α ∈ (0, 1). Suppose
ḣ, k̇ ∈ C∞(Σ◦

0; S
2 T ∗Σ◦

0) satisfy the linearized constraint
equations, and decay according to |ḣ(r , ω)| ≤ Cr−1−α,
|k̇(r , ω)| ≤ Cr−2−α, together with their derivatives along r∂r and
∂ω (spherical derivatives) up to order 8. Let ġ denote a solution of
the linearized Einstein vacuum equations on Ω which attains the
initial data ḣ, k̇ at Σ◦

0. Then there exist linearized black hole
parameters ḃ = (ṁ, ȧ) ∈ R× R3 and a vector field V on Ω, lying
in a 6-dimensional space, consisting of generators of spatial
translations and Lorentz boosts, such that

ġ = ġ ′
b(ḃ) + LV gb + ġ ′,

where for bounded r the tail ġ ′ satisfies the bound |ġ ′| ≤ C t−1−α+

(i.e. Cηt
−1−α+η ∀η > 0), ġ ′

b(ḃ) a gauge-fixed version of ġb(ḃ).
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Some technical remarks:

The ‘gauge fixed version’ means that ġb(ḃ) is modified by a
Lie derivative to satisfy the chosen linearized gauge condition.

the proof uses a linearized harmonic/wave/DeTurck gauge
condition on ġ .

in the published version a 7-dimensional space of vector fields
is used (one of which is non-geometric); a slight change of
gauge fixes this.

Extending the result to the full range of (m, a) is in progress,
and given recent work of Andersson, Häfner and Whiting, who
placed Whiting’s earlier results into this framework, is
expected to involve no serious complications.
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Back to the nonlinear setting: in DeTurck’s gauge, one fixes a
background metric g0, and requires that the identity map
(M, g) → (M, g0) be a wave map (solve a wave equation). This is
implemented by working with the equation (called a gauge fixed, or
reduced, Einstein’s equation)

Ric(g) + Λg − Φ(g , g0) = 0,

where
Φ(g , g0) = δ∗gΥ(g), Υ(g) = gg−1

0 δgGgg0.

Here δ∗g is the symmetric gradient mapping one-forms to symmetric
2-cotensors, δg its adjoint (negative divergence), Gg is the
trace-reversal operator Gg r = r − 1

2(trg r)g , and Υ(g) is the gauge
one-form, whose vanishing is equivalent to the wave map condition.

The point is that this is a (quasilinear) wave-type equation, so the
problems with diffeomorphism invariance have been eliminated,
thus at least one has local existence and uniqueness near the initial
surface Σ0!
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To see that for given initial data solving the gauged Einstein’s
equation actually gives a solution of the original, ungauged,
problem, one constructs Cauchy data for the gauged problem for g
which give rise to the required initial data and moreover solve
Υ(g) = 0 at Σ0 (Υ is a first order differential operator, so this is
determined by Cauchy data).

Solving the gauged Einstein equation with these data (which can
be done locally since this is a wave equation), the constraint
equations show that the normal derivative of Υ(g) at Σ0 also
vanishes...
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...then applying δgGg to the gauged Einstein’s equation, in view of
the second Bianchi identity,

δgGgRic(g) = 0,

true for any metric g , gives

□CP
g Υ(g) = 0, □CP

g = 2δgGgδ
∗
g ,

so by the vanishing of the Cauchy data for Υ(g) we see that Υ(g)
vanishes identically.

While any choice of g0 works for this local theory, for the global
solvability g0 makes a difference; it is natural to choose g0 = gb0 .
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The analytic framework we use:

non-elliptic linear global analysis with coefficients of finite
Sobolev regularity,

with a simple Nash-Moser iteration to deal with the loss of
derivatives corresponding to both non-ellipticity and trapping,

gives global solvability for quasilinear wave equations like the
gauged Einstein’s equation provided

certain dynamical assumptions are satisfied (only trapping is
normally hyperbolic trapping, with an appropriate subprincipal
symbol condition) (done for full KdS range: Petersen-V.) and

there are no exponentially growing modes (with a precise
condition on non-decaying ones), i.e. non-trivial solutions of
the linearized equation at gb0 of the form e−iσt∗ times a
function of the spatial variables r , ω only, with Imσ > 0.
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Unfortunately, in the DeTurck gauge, while the dynamical
assumptions are satisfied, there are growing modes, although only
a finite dimensional space of these. The key to proving the
theorem (given the analytic background) is to overcome this issue.

Typically when solving a non-linear equation any growing modes of
the linearization destroy stability; even non-decaying ones typically
do.

For instance, for the ODE u′ = u2 with initial condition at 0,
u ≡ 0 is a solution, which is stable on [0,T ] for any T , but for any
positive initial condition ϕ the solution u = ϕ/(1− tϕ) blows up in
finite time, so there cannot be any stability on [0,∞).

Here the linearized operator is v 7→ v ′, which has the non-decaying
mode v ≡ 1 (i.e. σ = 0).
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The Kerr-de Sitter family automatically gives rise to non-decaying
modes with σ = 0, but as these correspond to non-linear solutions,
one may expect these not to be a problem with some work.

However, in the DeTurck gauge there are even growing modes,
which are definitely problematic!

The reason this problem can be overcome is that the PDE is not
fixed: one can modify Φ(g , g0) as long as it gives a wave-type
equation which asymptotically behaves like a Kerr-de Sitter wave
equation.

In spite of this gauge freedom, we actually cannot arrange a gauge
in which there are no non-decaying modes, even beyond the trivial
Kerr-de Sitter family induced ones.
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However, we can arrange for a partial success: we can modify Φ by
changing δ∗g by a 0th order term:

δ̃∗ω = δ∗g0ω + γ1 dt∗ ⊗s ω − γ2g0 trg0(dt∗ ⊗s ω),

Φ(g , g0) = δ̃∗Υ(g).

For suitable choices of γ1, γ2 ≫ 0, this preserves the dynamical
requirements, and while the gauged Einstein’s equation does still
have growing modes, it has a new feature:

□̃CP
g = 2δgGg δ̃

∗, g = gb0

has no non-decaying modes! It should not be a surprise that such
a change is useful: there is no reason to expect that the DeTurck
gauge is well-behaved in any way except in a high differential order
sense, relevant for the local theory!
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We call this property SCP, or stable constraint propagation; by a
general feature of our analysis, this property is preserved under
perturbations of the metric around which we linearize. (Note:
SCP’s extension to the full subextremal range is in progress,
Hintz-Petersen-V.)

Such a change to the gauge term, called ‘constraint damping’, has
been successfully used in the numerical relativity literature by
Pretorius and others, following the work of Gundlach et al, to
damp numerical errors in Υ(g) = 0; here we show rigorously why
such choices work well.

SCP is useful because it means that, for g = gb0 , any non-decaying
mode h of the linearized gauge fixed Einstein equation is a solution
of Dg (Ric(g) + Λg)h = 0:
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... for g = gb0 , any non-decaying mode h of the linearized gauge
fixed Einstein equation is a solution of Dg (Ric(g) + Λg)h = 0.
This follows by applying δgGg to the gauge fixed Einstein’s

equation, using Bianchi’s second identity, giving that □̃CP
g (DgΥ)h

and thus (DgΥ)h vanish. Thus, properties of a gauge dependent
equation are reduced to those of one independent of the gauge!

Growing modes are disastrous for non-linear equations, such as
Einstein’s, so we also need a statement that the above modes are
actually pure gauge modes, i.e. given by linearized diffeomorphisms,
so of the form δ∗gω for a one-form ω, corresponding to infinitesimal
diffeomorphisms. We call this, together with a precise treatment of
the zero modes, UEMS, ungauged Einstein mode stability.

UEMS is actually well-established in the physics literature in a
form that is close to what one needs for a precise theorem; this
goes back to Regge-Wheeler, Zerilli and others; the invariant form
we use is due to Ishibashi, Kodama and Seto.
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Now, without the KdS-family zero modes (we call such a setting
UEMS*, which holds for dS), we could easily have a framework to
show global stability: namely consider

Φ(g , g0; θ) = δ̃∗(Υ(g)− θ),

where θ is an unknown, lying in a finite dimensional space Θ of
gauge terms of the form Dgb0

Υ(δ∗gb0
(χω)), where χ ≡ 1 for

t∗ ≫ 1, χ ≡ 0 near t∗ = 0, and such that δ∗gb0
ω is a non-decaying

resonance of the gauged Einstein operator.

As Dgb0
Υ(δ∗gb0

(ω)) = 0 by SCP, Dgb0
Υ(δ∗gb0

(χω)) is compactly
supported, away from Σ0, i.e. elements of Θ are also such.
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Then we could solve

Ric(g) + Λg − Φ(g , g0; θ) = 0

for g and θ, with g − gb0 in a decaying function space. So crucially
θ is also treated as an unknown.

This can be seen by solving the linearized equation without θ in a
space which is decaying apart from finitely many non-decaying
resonant modes, and then subtracting away cut off versions of
these resonant terms and checking the equation they satisfy.

The full KdS version is not much harder.
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Some interesting questions:

Is the Kerr-de Sitter family stable even if a is not small? The
main remaining issue here is checking UEMS, which is harder
due to the lack of symmetry. (The overall analytic framework
has recently been shown to work after a modification by
Petersen-V, with the constraint damping being the subject of
an “in progress” project of Hintz-Petersen-V.)

Cosmic censorship: what’s going on farther in the black hole
(r < r−)? Recent work of Dafermos-Luk in the Λ = 0 setting,
giving a conditional result, should have an unconditional
analogue, and the modification of the Dafermos-Luk argument
should not be too hard.

Can we see show an expansion of the solution in terms of
decaying modes? This would mathematically justify the
ringdown.

Last, but certainly not least: can we extend the non-linear
stability results to the case Λ = 0? (Giorgi-Klainerman-Szeftel,
Dafermos-Holzegel-Rodnianski-Taylor.)
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Thank you!
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The claim is that under UEMS* (i.e. ignoring the KdS-family zero
modes, which e.g. would be the case for dS) we can solve

Ric(g) + Λg − Φ(g , g0; θ) = 0,

for g and θ, with g − gb0 in a decaying function space. Here

Φ(g , g0; θ) = δ̃∗(Υ(g)− θ).

This can be seen by solving the linearized equation without θ in a
space which is decaying apart from finitely many non-decaying
resonant modes, and then subtracting away cut off versions of
these resonant terms and checking the equation they satisfy.

Concretely:
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The linearization of the gauged Einstein equation at (gb0 , 0), in
(g , θ) (with the linearized change of g denoted by r , that in θ is
still denoted by θ since the equation is linear in θ) is

(Dgb0
Ric+ Λ)r − δ̃∗(Dgb0

Υ)r + δ̃∗θ = 0.

This can be solved in a decaying function space.

Indeed, with slight imprecision, dropping the θ term, the equation
can be solved with solution r̃ with

r̃ =
∑
j

rj + r ′

r ′ in a decaying function space, rj finitely many non-decaying
terms, given by the resonances, which satisfy the linearized gauged
Einstein equation (but of course not the initial conditions).
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We have rj = δ∗gb0
ωj (UEMS*!), so as

(Dgb0
Ric+ Λ)δ∗gb0

ω = 0

for any one-form ω, due to gb0 solving Einstein’s equation and the
diffeomorphism invariance of Ric, the tensor

r = r̃ −
∑
j

δ∗gb0
(χωj)

satisfies

(Dgb0
Ric+ Λ)r − δ̃∗(Dgb0

Υ)r =
∑
j

δ̃∗(Dgb0
Υ)δ∗gb0

(χωj),

which is exactly of the form given above!
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Analytically, the point is that the operator

Lb0 = (Dgb0
Ric+ Λ)− δ̃∗(Dgb0

Υ)

is not surjective between appropriate decaying function spaces,
though the range is closed with a finite dimensional complement.

So we need to add a finite dimensional complementary subspace
W so that

Lb0r = f

for given f is replaced by...



The setup Geometry Stability The proof Outlook The gauge fixing

Lb0r = f + h,

h ∈ W undetermined, for this equation to become solvable in these
function spaces.

For us, W = δ̃∗Θ, and it is important that this lies in the range of
δ̃∗ because this assures (much like without the θ term) that the
solution of the gauged Einstein equation actually gives a solution
of the ungauged one!
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An important point is that the analytic framework is stable under
perturbations, so if one has a metric g which is close to gb0 in the
appropriate sense then for the gauged Einstein’s equation,
linearized at g ,

Lg = (DgRic+ Λ)− δ̃∗(DgΥ),

Lg r = f + h is also solvable with h in the same space W . In
particular, this holds for Kerr-de Sitter metrics with small a (and
their perturbations!).
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This assures that the non-linear equation is also solvable for
perturbations of the initial data, near gb0 , in the same decaying
function spaces, which then gives (under UEMS*) the non-linear
stability result.

We interpret as saying that solving the equation finds the gauge,
Υ(g) = θ, in which the solution is stable as well as the actual
solution of Einstein’s equation.

Now, UEMS* does not hold for the KdS family (exactly because it
is a family) but it does hold for de Sitter space, giving a new proof
of its stability.
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However, it is not hard to actually deal with the full KdS family by
modifying our equation by adding another term to it which
corresponds to the family and somewhat enlarging the space Θ.

The result is that for an appropriate finite dimensional space Θ the
nonlinear equation

(Ric(g) + Λg)− δ̃∗(Υ(g)−Υ(gb0,b)− θ) = 0

with prescribed initial condition is solvable for g , θ, b with θ ∈ Θ, b
near b0, and g − gb exponentially decaying; here
gb0,b = (1− χ)gb0 + χgb is the asymptotic Kerr-de Sitter metric
with parameter b. Thus, both b and θ are found along with g in
the nonlinear iteration! This proves the nonlinear stability of the
KdS family with small a.
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