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Motivation

Hydrodynamic formulation for the Schrödinger equation

𝑖𝜕𝑡𝜓(𝑡, 𝑥) = (−1
2𝑚Δ+ 𝑉 (𝑡, 𝑥))𝜓(𝑡, 𝑥)

can be rewritten as a system of conservation laws in terms of hydrodynamics
variables: if

𝜓(𝑡, 𝑥) =∶ √ 1
𝑚𝜚(𝑡, 𝑥) exp(𝑖𝑆(𝑡, 𝑥)),

then 𝜚 and 𝑢 ∶= 𝑚−1∇𝑆(𝑡, 𝑥) satisfy the compressible Euler type equations
𝜕𝑡𝜚 + div(𝜚𝑢) = 0

𝜕𝑡𝑢 + 𝑢 ⋅ ∇𝑢 + 1
𝑚∇(𝑉 + 𝑄) = 0

The quantum effects are all captured in Bohm’s potential

𝑄 ∶= − 1
2𝑚

Δ√𝜚√𝜚
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Motivation

Hydrodynamic formulation for the Dirac equation

• There has been substantial work trying to establish a hydrodynamics formulation
of the Dirac equation, most notably by Takabayasi.

• We propose a different hydrodynamics formulation
– using of the space algebra instead of the more commonly used C4-valued
spinor functions

– and considering a nonlinear variant of the Dirac equation.
• The model was proposed by Daviau and
1. adds the minimal amount of nonlinearity needed to achieve an additional 𝑈(1)
symmetry while keeping the first-order homogeneity,

2. admits a natural splitting of the spinor into left and right-handed components,
which is crucial for our approach, and

3. can correctly predict the energy levels in a hydrogen atom (C. Daviau et al.
2020).
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Space algebra

• The space algebra Cl3 is the Clifford algebra of the three-dimensional Euclidean
space R3. It adds to the usual vector calculus an associative product with the
following fundamental property

𝑢2 = 𝑢𝑢 = 𝑢 ⋅ 𝑢 for any 𝑢 ∈ R3,
i.e. the square of a vector gives the Euclidean inner product of the vector with
itself.

• Expanding vectors 𝑢 ∈ R3 in terms of an orthonormal basis 𝑒𝑘, 𝑘 = 1…3, this
requirements translates into the structure equation

𝑒𝑘𝑒𝑙 + 𝑒𝑙𝑒𝑘 = 2𝛿𝑘𝑙,
for 𝑘 = 1…3. The most straightforward and non-intrusive way to represent such a
product is to use matrix multiplication and the Pauli matrices

𝑒1 ∶= (0 1
1 0) , 𝑒2 ∶= (0 −𝑖

𝑖 0 ) , 𝑒3 ∶= (1 0
0 −1) .
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Space algebra

• Elements in R3 are associated with it a corresponding element in Cl3,

𝑥 = ⎛⎜
⎝

𝑥1

𝑥2

𝑥3
⎞⎟
⎠

∈ R3 ⟺ ⃗𝑥 = 𝑥𝑘𝑒𝑘 = ( 𝑥3 𝑥1 − 𝑖𝑥2

𝑥1 + 𝑖𝑥2 −𝑥3 ) ∈ Cl3.

• With the additional basis vector 1 we can embed spacetime into Cl3,

(𝑥0

𝑥) ∈ R× R3 ⟺ 𝑥𝜇𝑒𝜇 = (𝑥0 + 𝑥3 𝑥1 − 𝑖𝑥2

𝑥1 + 𝑖𝑥2 𝑥0 − 𝑥3) ∈ Cl3.

• Vectors in spacetime are therefore represented in Cl3 by linear combinations of
basis vectors 𝑒𝜇 with real coefficients i.e. Hermitian matrices e.g.
the proper velocity 𝑢 = 𝛾1+ �⃗� = 𝛾(1+ ⃗𝑣), the charge current 𝑗 = 𝑗0 + ⃗𝑗,
the electromagnetic potential 𝐴 = 𝐴0 + ⃗𝐴, the energy-momentum 𝑝 = 𝐸 + ⃗𝑝,…
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Space algebra

• A basis of Cl3 is given by

{𝑒0 ∶= 1, 𝑒𝑘, 𝑒𝑘𝑒𝑗, 𝑒1𝑒2𝑒3} with 1 ⩽ 𝑘 < 𝑗 ⩽ 3,
therefore Cl3 is 8-dimensional vector space over R. This is the same dimension as
for Dirac spinors, which classically are represented as C4-valued vector fields.

• It is not hard to check that 𝑒1𝑒2𝑒3 squares to −1 and commutes with all other basis
vectors. Identifying 𝑒1𝑒2𝑒3 with the imaginary unit 𝑖, it is convenient to turn Cl3 into
a vector space over the complex numbers C i.e. to consider

𝑀 = 𝑎 + �⃗� + 𝑖 ⃗𝑣 + 𝑖𝑏 with 𝑎, 𝑏 ∈ R and 𝑢, 𝑣 ∈ R3.
Thus 𝑀 is a sum of a spacetime vector 𝑎 + �⃗� and 𝑖 times another spacetime
vector 𝑏 + ⃗𝑣.
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Space algebra

Inner product in Cl3

• Since elements in Cl3 are matrices, we can use the Frobenius inner product

⟨𝑀,𝑁⟩ ∶= 1
2 tr(𝑀𝑁 †) for 𝑀,𝑁 ∈ Cl3,

and denote by ‖𝑀‖ ∶= ⟨𝑀,𝑀⟩1/2 the induced norm.
• The basis vectors 𝑒𝜇 are orthonormal with respect to this inner product.
• For all vectors 𝑥 = 𝑥0 + ⃗𝑥, 𝑦 = 𝑦0 + ⃗𝑦 ∈ Cl3 we have that

⟨𝑥, 𝑦⟩ = 𝑥0𝑦0 + 𝑥 ⋅ 𝑦 and ‖𝑥‖2 = (𝑥0)2 + ‖𝑥‖2.
In this sense, the embedding of spacetime R× R3 into Cl3 is an isometry.
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Space algebra

Three conjugations

𝑀 =∶ (𝐴 𝐵
𝐶 𝐷) ⟺ 𝑀 † = (𝐴∗ 𝐶∗

𝐵∗ 𝐷∗) Hermitian conjugation

𝑀 = (𝐴 𝐵
𝐶 𝐷) ⟺ �̄� ∶= adj(𝑀) = ( 𝐷 −𝐵

−𝐶 𝐴 ) spatial reversal

𝑀 = (𝐴 𝐵
𝐶 𝐷) ⟺ �̂� ∶= �̄� † = ( 𝐷∗ −𝐶∗

−𝐵∗ 𝐴∗ ) grade automorphism
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Space algebra

The gradient operator

• The space algebra analogue of the gradient operator is

∇ ∶= 𝑒𝜇𝜕𝜇 = ( 𝜕0 − 𝜕3 −𝜕1 + 𝑖𝜕2
−𝜕1 − 𝑖𝜕2 𝜕0 + 𝜕3

) .

• When ∇ is applied to a scalar-valued function 𝑓 , then we have that

∇𝑓 = (𝜕0𝑓) 𝑒0 + (𝜕1𝑓) 𝑒1 + (𝜕2𝑓) 𝑒2 + (𝜕3𝑓) 𝑒3,
but, in general, when applied to a Cl3-valued function 𝜙, then the 𝑒𝜇 interact with
the function 𝜙 by matrix multiplication.

• We can split the operator ∇ into a time (scalar) and a spatial (vector) part, writing

∇ = 𝜕0 + ∇⃗ with ∇⃗ = 𝑒𝑘𝜕𝑘
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Improved Dirac equation

We start with the classical Dirac equation

𝛾𝜇𝐷𝜇𝜓 + 𝑖𝑚𝜓 = 0
where the covariant derivative 𝐷𝜇 ∶= 𝜕𝜇 + 𝑖𝑞𝐴𝜇 couples 𝜓 to an external
electromagnetic field, with 𝐴𝜇 a given electromagnetic potential.
We work in the chiral representation of the gamma matrices, thus

𝛾0 = 𝛾0 = (0 𝑒0
𝑒0 0) , 𝛾𝑘 = −𝛾𝑘 = ( 0 𝑒𝑘

−𝑒𝑘 0) , 𝑘 = 1…3,

and let
𝜓 =∶ ( 𝜉

𝜂 ) with 𝜉 =∶ (𝜉1
𝜉2
) , 𝜂 =∶ (𝜂1

𝜂2
)
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Improved Dirac equation

Block structure
• Then the block structure of the Dirac equation implies that

𝑒𝜇(𝜕𝜇 + 𝑖𝑞𝐴𝜇)𝜂 + 𝑖𝑚𝜉 = 0 ̂𝑒𝜇(𝜕𝜇 + 𝑖𝑞𝐴𝜇)𝜉 + 𝑖𝑚𝜂 = 0
• We can combine these two equations into a single one by interpreting these two
equations as the left/right column vectors of a (2 × 2)-matrix. More precisely, let

𝐿 ∶= (0 −𝜂∗2
0 𝜂∗1

) and 𝑅 ∶= (𝜉1 0
𝜉2 0)

be the left/right parts of the spinor wave so that

(∇ + 𝑖𝑞𝐴)�̂� + 𝑖𝑚𝑅 = 0 (∇ − 𝑖𝑞𝐴)�̂� − 𝑖𝑚𝐿 = 0
• We can therefore combine them by adding them:

∇ ̂𝜙 + 𝑖𝑞𝐴 ̂𝜙𝑒3 + 𝑖𝑚𝜙𝑒3 = 0
for the Cl3-valued spinor field 𝜙 ∶= 𝐿 + 𝑅.

12 of 22 A hydrodynamic formulation for a nonlinear Dirac equation | Joan Morrill
(morrill@eddy.rwth-aachen.de), joint work with Michael Westdickenberg |
02/10/2024 | Texas Analysis and Mathematical Physics Symposium



Improved Dirac equation

• If we multiply by the spatial reversal ̄𝜙, it reads
̄𝜙∇ ̂𝜙 + 𝑖𝑞( ̄𝜙𝐴 ̂𝜙)𝑒3 + 𝑖𝑚( ̄𝜙𝜙)𝑒3 = 0.

• But this equation is not invariant under transformations of the form

𝜙(𝑥) = 𝑀−1𝜓(𝑦) with 𝑦 = 𝑀𝑥𝑀 †,
for some invertible complex (2 × 2)-matrix 𝑀 (not necessarily with det𝑀 = 1)

• E.g. if 𝑀 = exp(𝑖𝛽/2)1 with 𝛽 ≠ 0 then det(𝑀) = exp(𝑖𝛽) and
̄𝜙(𝑥)𝜙(𝑥) = ̄𝜓(𝑦)(�̄�𝑀)𝜓(𝑦) = det(𝑀) ̄𝜓(𝑦)𝜓(𝑦).

This is strange because for this choice of 𝑀 , spacetime does not change at all:

𝑦 = 𝑀𝑥𝑀 † = 𝑥
only 𝜓 is multiplied by some global exponential factor.
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Improved Dirac equation

• Following Daviau, we consider the nonlinear Dirac equation
̄𝜙∇ ̂𝜙 + 𝑖𝑞( ̄𝜙𝐴 ̂𝜙)𝑒3 + 𝑖𝑚𝑃𝑒3 = 0 with 𝑃 ∶= | det(𝜙)|.

• The nonlinearity has the same homogeneity as the original term ̄𝜙𝜙.
• We now define the Dirac current 𝐽 ∶= 𝜙𝜙† and obtain

𝑃1 = ̄𝜙𝑉 ̂𝜙 with velocity 𝑉 ∶= 𝑃−1𝐽.

𝑃 2 = | det(𝜙)|2 = 1
2 tr ((

̄𝜙𝜙)( ̄𝜙𝜙)†) = 1
2 tr ((𝜙𝜙

†) (𝜙𝜙†)) = det(𝐽)
• The nonlinear Dirac equation takes the form

̄𝜙∇ ̂𝜙 + 𝑖 ̄𝜙(𝑞𝐴 +𝑚𝑉 ) ̂𝜙𝑒3 = 0.
Assuming that 𝜙 is invertible, we obtain the remarkably simple equation

∇ ̂𝜙 + 𝑖(𝑞𝐴 +𝑚𝑉 ) ̂𝜙𝜎3 = 0
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Global existence

{∇ ̂𝜙 + 𝑖(𝑞𝐴 +𝑚𝑉 ) ̂𝜙𝜎3 = 0 in [0, 𝑇 ] × R3

𝜙|𝑡=0 = 𝜙0 in R3

• Regularisation becomes necessary because the nonlinearity, which is
homogeneous of degree one, is non-smooth in nodal points where 𝑃 vanishes.

• Our approach replaces the 𝑖𝑚𝑉 ̂𝜙𝜎3 = 𝑖𝑚𝑃−1𝐽 ̂𝜙𝜎3 with
𝑖𝑚(𝑃 + 𝜆‖𝜙‖2)−1𝐽 ̂𝜙𝜎3 =∶ 𝑔𝜆(𝜙)

where ‖𝜓‖2 ∶= 𝜓†𝜓 and 𝜆 > 0. Then
– maps 𝐿2(R3)4 into itself and

‖𝑔𝜆(𝜙)‖𝐿2(R3)4 ≲ 𝑚‖𝜙‖𝐿2(R3)4 for all 𝜙 ∈ 𝐿2(R3)4
– is Lipschitz continuous on 𝐿2(R3)4,

‖𝑔𝜆(𝜙) − 𝑔𝜆(𝜙′)‖𝐿2(R3)4 ≲ 𝑚(𝜆−1 + 1)‖𝜙 − 𝜙′‖𝐿2(R3)4 for all 𝜙, 𝜙′ ∈ 𝐿2(R3)4
– maps 𝐻1(R3)4 into itself and

‖𝑔𝜆(𝜙)‖𝐻1(R3)4 ≲ 𝑚(𝜆−1 + 1)‖𝜙‖𝐻1(R3)4 for all 𝜙 ∈ 𝐻1(R3)4
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Global existence

Time-stepping

0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇

𝜓1

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔𝜆(𝜙0) = 0 in [0, 𝑇1] × R3

𝜓|𝑡=0 = 𝜙0 in R3

𝜓 ∈ 𝐶([0, 𝑇1],𝐻1(R3)4) ∩ 𝐶1([0, 𝑇1], 𝐿2(R3)4)
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Global existence

Time-stepping

0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇

𝜓2

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔𝜆(𝜓1(𝑇1)) = 0 in [𝑇1, 𝑇2] × R3

𝜓|𝑡=𝑇1
= 𝜓1(𝑇1) in R3

𝜓 ∈ 𝐶([𝑇1, 𝑇2],𝐻1(R3)4) ∩ 𝐶1([𝑇1, 𝑇2], 𝐿2(R3)4)
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Global existence

Time-stepping

0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇

𝜓3

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔𝜆(𝜓2(𝑇2)) = 0 in [𝑇2, 𝑇3] × R3

𝜓|𝑡=𝑇2
= 𝜓2(𝑇2) in R3

𝜓 ∈ 𝐶([𝑇2, 𝑇3],𝐻1(R3)4) ∩ 𝐶1([𝑇2, 𝑇3], 𝐿2(R3)4)
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Global existence

Time-stepping

0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇

𝜓4

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔𝜆(𝜓3(𝑇3)) = 0 in [𝑇3, 𝑇4] × R3

𝜓|𝑡=𝑇3
= 𝜓3(𝑇3) in R3

𝜓 ∈ 𝐶([𝑇3, 𝑇4],𝐻1(R3)4) ∩ 𝐶1([𝑇3, 𝑇4], 𝐿2(R3)4)
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Global existence

Time-stepping

0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇

𝜓5

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔𝜆(𝜓4(𝑇4)) = 0 in [𝑇4, 𝑇5] × R3

𝜓|𝑡=𝑇2
= 𝜓4(𝑇4) in R3

𝜓 ∈ 𝐶([𝑇4, 𝑇5],𝐻1(R3)4) ∩ 𝐶1([𝑇4, 𝑇5], 𝐿2(R3)4)
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Global existence

Time-stepping

0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔𝜆(𝜓5(𝑇5)) = 0 in [𝑇5, 𝑇 ] × R3

𝜓|𝑡=𝑇5
= 𝜓5(𝑇5) in R3

𝜓 ∈ 𝐶([𝑇5, 𝑇 ],𝐻1(R3)4) ∩ 𝐶1([𝑇5, 𝑇 ], 𝐿2(R3)4)
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Global existence

Compactness and consistency of the approximate solutions

• Moreover, for every 1 ≤ 𝑘 ≤ 𝑛, we have the estimates
‖𝜓𝑘(𝑡)‖𝐻1(R3)4 ≤ ‖𝜓𝑘−1(𝑇𝑘−1)‖𝐻1(R3)4(1 + 𝐶𝑚,𝜆(𝑡 − 𝑇𝑘−1))

with 𝐶𝑚,𝜆 ∝ 𝑚(𝜆−1 + 1), for all 𝑡 ∈ [𝑇𝑘−1, 𝑇𝑘].
• So if we define {𝜙𝑛(𝑡)}∞𝑛=1 piece-wise as

𝜙𝑛(𝑡) ∶= 𝜓𝑘(𝑡) if 𝑡 ∈ [𝑇𝑘−1, 𝑇𝑘],
for every 1 ≤ 𝑘 ≤ 𝑛 then,

{𝜙𝑛(𝑡)}∞𝑛=1 is bounded uniformly in 𝐿∞([0, 𝑇 ],𝐻1(R3)4)
and {𝜕𝑡𝜙𝑛(𝑡)}∞𝑛=1is bounded uniformly in 𝐿∞([0, 𝑇 ], 𝐿2(R3)4).

• A compactness result (Aubin-Lions lemma) shows that the limit 𝜙(𝑡) is a weak
solution in the sense that 𝜙(𝑡) ∈ 𝐿∞([0, 𝑇 ], 𝐿2(R3)4) and

∫
𝑇

0
∫
R3
⟨∇𝜉(𝑡), 𝜙(𝑡)⟩𝑑 ⃗𝑥𝑑𝑡 − 𝑖∫

R3
⟨𝜉(0), 𝜙0⟩𝑑 ⃗𝑥 = ∫

𝑇

0
∫
R3
⟨𝜉(𝑡), 𝑔𝜆(𝜙(𝑡)⟩𝑑 ⃗𝑥𝑑𝑡

for every test function 𝜉 ∈ 𝐶∞
𝑐 ([0, 𝑇 ) × R3).
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Hydrodynamics formulation

Lemma (1)

Suppose the C2-valued spinor field 𝜂 satisfies

∇𝜂 + 𝑖(𝑞𝐴 +𝑚𝑉 )𝜂 = 0 in [0,∞) × R3,
with electromagnetic potential 𝐴 and a given Hermitian vector field 𝑉 , to
which we will refer as pilot wave. We define the energy-momentum tensor by

𝑇𝜇𝜈 ∶= Re(𝑖(𝜂†𝑒𝜇(𝐷𝜈𝜂))) for 𝜇, 𝜈 = 0…3.
Then

𝜕𝜇𝑇𝜇𝜈 + 𝑞𝐹𝜇𝜈𝑗𝜇 = 𝑚(𝜕𝜈𝑉𝜇) 𝑗𝜇 for 𝜈 = 0…3,
with the charge current 𝑗 and electromagnetic tensor field 𝐹 defined by

𝑗 ∶= 𝑗𝜇𝑒𝜇 ∶= 2𝜂𝜂† and 𝐹 ∶= 𝐹𝜇𝜈𝑒𝜇𝑒𝜈, 𝐹𝜇𝜈 ∶= 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇.
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Hydrodynamics formulation

Lemma (2)

Let 𝜂 and 𝑗𝜇, 𝑇𝜇𝜈 be as in the lemma on the previous slide. Then 𝜕𝜇𝑗𝜇 = 0 and

𝜕0𝑗𝑘 + 𝜕𝑘𝑗0 + 2𝜖𝑘𝑙𝑛𝑇𝑙𝑛 = 2𝑚𝜖𝑘𝑙𝑛𝑉𝑛𝑗𝑙
for 𝑘 = 1…3.

Lemma (3)

Let 𝜂 and 𝑗𝜇, 𝑇𝜇𝜈 be as in the lemma on the previous slide and define

𝜚 ∶= 𝑗0, 𝑣𝑘 ∶= 𝑗𝑘
𝑗0

and 𝑝𝑘 ∶= 𝑇0𝑘 for 𝑘 = 1…3.

Then ‖𝑣‖ = 1 and the energy-momentum tensor can be rewritten as

𝑇𝑙𝑛 = 𝑣𝑙𝑝𝑛 −
1
2𝜖𝑙𝑘𝑜𝑣𝑘 (𝜕𝑛𝑗𝑜) for 𝑙, 𝑛 = 1…3.
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Hydrodynamics formulation

Theorem
Consider a spinor 𝜙 satisfying the nonlinear Dirac equation. Let

𝜂 ∶= (𝜂1
𝜂2
) , ̂𝜉 ∶= (−𝜉∗2

𝜉∗1
) with ̂𝜙 =∶ (𝜂1 −𝜉∗2

𝜂2 𝜉∗1
) .

Define (𝜚⋅, 𝑣⋅, 𝑝⋅, 𝑗⋅) for ⋅ = 𝐿,𝑅 as before for 𝜂, ̂𝜉, respectively. Then
⎧{
⎨{⎩

𝜕𝑡𝜚 + div(𝜚𝑣) = 0
𝜕𝑡(𝜚𝑣) + div(𝜚𝑣 ⊗ 𝑣) + 2𝜚(𝑣 × (∇ × 𝑣)) − (𝑣 × (𝑣 × ∇𝜚)) = 2𝑣 × (−𝑝 ±𝑚𝜚𝑉 )
𝜕𝑡𝑝𝑛 + div (𝑝𝑛𝑣) − 1

2div (𝜚𝑣 × (𝜕𝑛𝑣)) = ±(−𝑞𝐹𝜇𝑛 +𝑚(𝜕𝑛𝑉𝜇))𝑗𝜇
for 𝑛 = 1…3, with sign

+ for(𝜚, 𝑣, 𝑝, 𝑗) = (𝜚𝐿, 𝑣𝐿, 𝑝𝐿, 𝑗𝐿) ,
− for (𝜚, 𝑣, 𝑝, 𝑗) = (𝜚𝑅, 𝑣𝑅, 𝑝𝑅, 𝑗𝑅) .
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Hydrodynamics formulation

• The picture suggested is that for a solution 𝜙 to the nonlinear Dirac equation,
𝐽 = 𝜙𝜙† defines the flowlines that guide the motion of the left and right
spinors (i.e. their flowlines curl helically around the flowlines of the Dirac current).
We call the Dirac current the pilot wave, using De Broglie’s terminology.

• The left and right spinor flowlines move with light speed as ‖𝑣‖ = 1, whereas the
velocity of the Dirac current is subluminal.

Flowlines of the Dirac current 𝐽
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Hydrodynamics formulation

• The picture suggested is that for a solution 𝜙 to the nonlinear Dirac equation,
𝐽 = 𝜙𝜙† defines the flowlines that guide the motion of the left and right
spinors (i.e. their flowlines curl helically around the flowlines of the Dirac current).
We call the Dirac current the pilot wave, using De Broglie’s terminology.

• The left and right spinor flowlines move with light speed as ‖𝑣‖ = 1, whereas the
velocity of the Dirac current is subluminal.

Flowlines of the charge current 𝑗
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Thank you for your attention
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Multiplicative inverses

• One big advantage of using a Clifford algebra comes from the fact that elements in
Cl3 may have multiplicative inverses.

• Elements in Cl3 with non-vanishing determinant are thus invertible with

𝑀−1 = (𝑀�̄�)−1�̄�
which functions both as a left and right inverse because 𝑀�̄� = �̄�𝑀 . Notice that
det(𝑀) is typically different from the norm ‖𝑀‖2.
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Fierz identity

We can use the scalar product [𝑀,𝑁] ∶= 1
2tr(𝑀𝑁) to compute the

coefficients of elements in Cl3 with respect to the basis vectors.

Lemma
For any 𝑀 ∈ Cl3 we have

𝑀 = [𝑀, 𝑒𝜇] 𝑒𝜇 = [𝑀, 𝑒𝜇] 𝑒𝜇.
In particular, for any 𝜉, 𝜂 ∈ C2 we have the basic Fierz identity

𝜂𝜉† = [𝜂𝜉†, 𝑒𝜇] 𝑒𝜇 = 1
2 tr((𝜂𝜉

†)𝑒𝜇)𝑒𝜇 = 1
2(𝜉

†𝑒𝜇𝜂)𝑒𝜇

Proof.
We apply [⋅, 𝑒𝜈] to 𝑀 = 𝑤𝜇𝑒𝜇 with 𝑤𝜇 ∈ C and then use that [𝑒𝜇, 𝑒𝜈] = 𝛿𝜇𝜈.
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• Hermitian conjugation can be used to characterise spacetime vectors.
• Spatial reversal can be used to isolate scalar and vector parts of 𝑀 , defined as

⟨𝑀⟩scalar ∶= 1
2(𝑀 + �̄�) and ⟨𝑀⟩vector ∶= 1

2(𝑀 − �̄�).

• Grade automorphism can be used to isolate even and odd parts of 𝑀 , defined as

⟨𝑀⟩even ∶= 1
2(𝑀 + �̂�) and ⟨𝑀⟩odd ∶= 1

2(𝑀 − �̂�).

The determinant of a spacetime vector 𝑥 = 𝑥𝜇𝑒𝜇 with 𝑥𝜇 ∈ R is

det(𝑥) = (𝑥0)2 − (𝑥1)2 − (𝑥2)2 − (𝑥3)2 = (𝑥0)2 − ‖𝑥‖2

which is just the Minkowski metric.
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Compactness

• For 0 ≤ 𝑠 < 1, the family of functions ℱ ∶= {𝜙𝑛(𝑡) ∶ 𝑛 ≥ 1} is pre-compact in
𝐶([0, 𝑇 ],𝐻𝑠

loc(R3)4). Thus, the sequence of approximate solutions {𝜙𝑛(𝑡)}∞𝑛=1
admits a subsequence, not relabelled here, such that

𝜙𝑛(𝑡) → 𝜙(𝑡) strongly in 𝐶([0, 𝑇 ],𝐻𝑠
loc(R3)4).

• Idea of the proof: given a compact set K ⊆ R3, ℱ consists of elements in

𝑊 ∶= {𝜓(𝑡) ∈ 𝐿∞([0, 𝑇 ],𝐻1(R3)4) ∶ 𝜕𝑡𝜓(𝑡) ∈ 𝐿∞([0, 𝑇 ], 𝐿2(R3)4))}
Hence, restrictions to K of elements of ℱK belong to

𝑊(K) ∶= {𝜓(𝑡) ∈ 𝐿∞([0, 𝑇 ],𝐻1(K)4) ∶ 𝜕𝑡𝜓(𝑡) ∈ 𝐿∞([0, 𝑇 ], 𝐿2(K)4))}.
By the Rellich-Kondrachov’s theorem, 𝐻1(K)4 ↪ 𝐻𝑠(K)4 for any 0 ≤ 𝑠 < 1. Thus
we can apply the Aubin-Lions lemma to see that 𝑊(K) is pre-compact in
𝐶([0, 𝑇 ],𝐻𝑠(K)4).
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Consistency of the approximate solutions

∫
𝑇

0
∫
R3
⟨∇𝜉(𝑡), 𝜙(𝑡)⟩𝑑𝑥𝑑𝑡 − 𝑖∫

R3
⟨𝜉(0), 𝜙0⟩𝑑𝑥 = ∫

𝑇

0
∫
R3
⟨𝜉(𝑡), 𝑔𝜆(𝜙(𝑡)⟩𝑑𝑥𝑑𝑡

Note the second integral term on the left-hand side works as a weak
formulation of the fact 𝜓(0) = 𝜓0.
• Starting with the LHS, we consider:

∫
𝑇

0
∫
R3
⟨∇𝜉(𝑡), 𝜙𝑛(𝑡)⟩𝑑𝑥𝑑𝑡 − 𝑖∫

R3
⟨𝜉(0), 𝜙0⟩𝑑𝑥

• By integrating by parts,

∫
𝑇

0
∫
R3
⟨∇𝜉(𝑡), 𝜙𝑛(𝑡)⟩𝑑𝑥𝑑𝑡 − 𝑖∫

R3
⟨𝜉(0), 𝜙0⟩𝑑𝑥 = ∫

𝑇

0
∫
R3
⟨𝜉, ∇̂𝜙𝑛⟩𝑑 ⃗𝑥𝑑𝑡
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∫
𝑇

0
∫
R3
⟨𝜉, ∇̂𝜙𝑛⟩𝑑 ⃗𝑥𝑑𝑡 =

𝑛
∑
𝑘=1

∫
𝑇𝑘

𝑇𝑘−1

∫
R3
⟨𝜉, ∇̂𝜓𝑘⟩𝑑 ⃗𝑥𝑑𝑡

=
𝑛

∑
𝑘=1

∫
𝑇𝑘

𝑇𝑘−1

∫
R3
⟨𝜉, 𝑔𝜆(𝜓𝑘−1(𝑇𝑘−1))⟩𝑑 ⃗𝑥𝑑𝑡

(by the definition of the 𝜙𝑛) =
𝑛

∑
𝑘=1

∫
𝑇𝑘

𝑇𝑘−1

∫
R3
⟨𝜉, 𝑔𝜆(𝜙𝑘−1(𝑇𝑘−1))⟩𝑑 ⃗𝑥𝑑𝑡

(by the mean value theorem) = 𝑇
𝑛

𝑛
∑
𝑘=1

∫
R3
⟨𝜉(𝑇𝑘−1), 𝑔𝜆(𝜙𝑛(𝑇𝑘−1))⟩𝑑 ⃗𝑥 + 𝑜(𝑇/𝑛)

using that for each component of 𝜉

𝜉𝑖(𝑡) = 𝜉𝑖(𝑇𝑘−1) +∫
𝑡

𝑇𝑘−1

𝜉′𝑖(𝑠)𝑑𝑠 𝑖 = 1…4.
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• It remains to pass to the limit:

lim
𝑛

𝑇
𝑛

𝑛
∑
𝑘=1

∫
R3
⟨𝜉(𝑇𝑘−1), 𝑔𝜆(𝜙𝑛(𝑇𝑘−1))⟩𝑑 ⃗𝑥 = ?

which we do by adding and subtracting

𝑇
𝑛

𝑛
∑
𝑘=1

∫
R3
⟨𝜉(𝑇𝑘−1), 𝑔𝜆(𝜙(𝑇𝑘−1))⟩𝑑 ⃗𝑥

• On one hand

lim
𝑛

𝑇
𝑛

𝑛
∑
𝑘=1

∫
R3
⟨𝜉(𝑇𝑘−1), 𝑔𝜆(𝜙𝑛(𝑇𝑘−1)) − 𝑔𝜆(𝜙(𝑇𝑘−1))⟩𝑑 ⃗𝑥 = 0.

by the strong convergence in 𝐶([0, 𝑇 ], 𝐿2
loc(R3)4), and on the other,

lim
𝑛

𝑇
𝑛

𝑛
∑
𝑘=1

∫
R3
⟨𝜉(𝑇𝑘−1), 𝑔𝜆(𝜓(𝑇𝑘−1))⟩𝑑 ⃗𝑥 = ∫

𝑇

0
∫
R3
⟨𝜉(𝑡), 𝑔𝜆(𝜓(𝑡))⟩𝑑 ⃗𝑥𝑑𝑡

by Lebesgue’s theory of integration.
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Time-stepping

• If 𝑔 is of class 𝐶([𝑇0, 𝑇 ], 𝐿2(R3)4) ∩ 𝐿1([𝑇0, 𝑇 ],𝐻1(R3)4), then for any initial
condition 𝜓0 ∈ 𝐻1(R3)4 the initial value problem

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔(𝑡) = 0 in [𝑇0, 𝑇 ] × R3

𝜓|𝑡=𝑇0
= 𝜓0 in R3

𝜓 ∈ 𝐶([𝑇0, 𝑇 ],𝐻1(R3)4) ∩ 𝐶1([𝑇0, 𝑇 ], 𝐿2(R3)4)
has a unique solution.

• That is, for any 𝑛 ≥ 0 the initial value problems

⎧{
⎨{⎩

∇ ̂𝜓 − 𝑔𝜆(𝜓𝑘−1(𝑇𝑘−1)) = 0 in [𝑇𝑘−1, 𝑇𝑘] × R3

𝜓|𝑡=𝑇𝑘−1
= 𝜙𝑘−1(𝑇𝑘−1) in R3

𝜓 ∈ 𝐶([𝑇𝑘−1, 𝑇𝑘],𝐻1(R3)4) ∩ 𝐶1([𝑇𝑘−1, 𝑇𝑘], 𝐿2(R3)4)
have a unique solution 𝜓𝑘(𝑡) and 𝜓𝑘(𝑇𝑘) ∈ 𝐻1(R3)4 for all 1 ≤ 𝑘 ≤ 𝑛.
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