Effective Dynamics of Bose-Fermi Mixtures

Joseph K. Miller

University of Texas at Austin
Joint with Esteban Cárdenas and Nataša Pavlović

February 10th, 2024. Texas A \& M

图) TEXAS

Table of Contents

(1) Bosons
(2) Fermions
(3) Mixtures

What are Bosons?

Bosons are quantum particles whose statistics are symmetric:
$L_{s}^{2}\left(\mathbb{R}^{d N}\right)=\left\{\Psi_{N} \in L^{2}\left(\mathbb{R}^{d N}\right): \forall \sigma \in S_{N}, \Psi\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}\right)=\Psi\left(x_{1}, \ldots, x_{N}\right)\right\}$

What are Bosons?

Bosons are quantum particles whose statistics are symmetric:
$L_{s}^{2}\left(\mathbb{R}^{d N}\right)=\left\{\Psi_{N} \in L^{2}\left(\mathbb{R}^{d N}\right): \forall \sigma \in S_{N}, \Psi\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}\right)=\Psi\left(x_{1}, \ldots, x_{N}\right)\right\}$

They evolve according to Schrödinger's equation

$$
i \hbar \partial_{t} \Psi_{N}=H_{N} \Psi_{N}
$$

where H_{N} is the Hamiltonian encoding the physics of the system.

What are Bosons?

Bosons are quantum particles whose statistics are symmetric:
$L_{s}^{2}\left(\mathbb{R}^{d N}\right)=\left\{\Psi_{N} \in L^{2}\left(\mathbb{R}^{d N}\right): \forall \sigma \in S_{N}, \Psi\left(x_{\sigma(1)}, \ldots, x_{\sigma(N)}\right)=\Psi\left(x_{1}, \ldots, x_{N}\right)\right\}$

They evolve according to Schrödinger's equation

$$
i \hbar \partial_{t} \Psi_{N}=H_{N} \Psi_{N}
$$

where H_{N} is the Hamiltonian encoding the physics of the system.

Question: How do we effectively describe $\Psi_{N}(t)$ for $N \gg 1$?

Bose-Einstein Condensates

It was noticed by Bose and Einstein in 1924 that symmetric wave functions could condense and be represented by a single wave function,

$$
\Psi_{N} \approx \psi^{\otimes N}
$$

Bose-Einstein Condensates

It was noticed by Bose and Einstein in 1924 that symmetric wave functions could condense and be represented by a single wave function,

$$
\Psi_{N} \approx \psi^{\otimes N}
$$

This was experimentally confirmed much later by cooling a gas of bosons to their lowest energy state [Cornell, Wieman 1995], [Ketterle 1995].

Bose-Einstein Condensates

It was noticed by Bose and Einstein in 1924 that symmetric wave functions could condense and be represented by a single wave function,

$$
\Psi_{N} \approx \psi^{\otimes N}
$$

Schrödinger \rightarrow Hartree

Definition (Marginal)

Given $\Psi_{N} \in L^{2}\left(\mathbb{R}^{d N}\right)$ define the first marginal

$$
\begin{aligned}
\gamma_{N}\left(t ; x_{1}, x_{1}^{\prime}\right) & =N \int_{\mathbb{R}^{2 d(N-1)}} \Psi_{N}\left(t, x_{1}, x_{2}, \ldots, x_{N}\right) \overline{\Psi_{N}}\left(t, x_{1}^{\prime}, x_{2}, \ldots, x_{N}\right) d x_{2} \ldots d x_{N} \\
& =N \operatorname{Tr}_{2, \ldots, N}\left|\Psi_{N}\right\rangle\left\langle\Psi_{N}\right|
\end{aligned}
$$

Question: Given the Hamiltonian

$$
H_{N}:=\frac{-\hbar^{2}}{2 m} \sum_{i=1}^{N} \Delta_{x_{i}}+\frac{1}{N} \sum_{i, j=1}^{N} V\left(x_{i}-x_{j}\right),
$$

and the initial data $\Psi_{N}(0)=\psi_{0}^{\otimes N}$, how does γ_{N} evolve under Schrödinger's equation?

Schrödinger \rightarrow Hartree

Physicists answer: Let $\psi(t)$ solve

$$
\left\{\begin{array}{l}
i \hbar \partial \psi=-\frac{\hbar^{2}}{2 m} \Delta \psi+\left(V *|\psi|^{2}\right) \psi \tag{1}\\
\psi(0)=\psi_{0}
\end{array} .\right.
$$

Then by asymptotic expansions

$$
\begin{equation*}
\gamma_{N}(t) \approx|\psi(t)\rangle\langle\psi(t)| \quad \text { as } N \rightarrow \infty . \tag{2}
\end{equation*}
$$

Schrödinger \rightarrow Hartree

Hartree derivation:
\triangleright [Spohn '80] for bounded interactions
\triangleright [Erdös, Yau '01] for Coulomb interactions
\triangleright [Rodnianski, Schlein '09], [Chen, Oon Lee, Schlein '11] with rates using Second Quantization
\triangleright [Dietze, Lee '22] uniform-in-time convergence
Gross-Pitaevskii/NLS:
\triangleright [Erdös, Schlein, Yau '06], [Adami, Golse, Teta '07] first results for deriving NLS
\triangleright [Kirkpatrick, Schlein, Staffilani '11] NLS on \mathbb{T}^{2}
\triangleright [Chen, Hainzl, Pavlović, Seiringer '15] Gross-Pitaevskii hierarchy unconditional uniqueness

What are Fermions?

Fermions are quantum particles whose statistics are antisymmetric:

$$
\begin{aligned}
& L_{a}^{2}\left(\mathbb{R}^{d M}\right)= \\
& \left\{\Psi_{M} \in L^{2}\left(\mathbb{R}^{d M}\right): \forall \sigma \in S_{M}, \Psi\left(x_{\sigma(1)}, \ldots, x_{\sigma(M)}\right)=(-1)^{\operatorname{sgn}(\sigma)} \Psi\left(x_{1}, \ldots, x_{M}\right)\right\}
\end{aligned}
$$

What are Fermions?

Fermions are quantum particles whose statistics are antisymmetric:

$$
\begin{aligned}
& L_{a}^{2}\left(\mathbb{R}^{d M}\right)= \\
& \left\{\Psi_{M} \in L^{2}\left(\mathbb{R}^{d M}\right): \forall \sigma \in S_{M}, \Psi\left(x_{\sigma(1)}, \ldots, x_{\sigma(M)}\right)=(-1)^{\operatorname{sgn}(\sigma)} \Psi\left(x_{1}, \ldots, x_{M}\right)\right\}
\end{aligned}
$$

They also evolve according to Schrödinger's equation

$$
i \hbar \partial_{t} \Psi_{M}=H_{M} \Psi_{M}
$$

where H_{M} is the Hamiltonian encoding the physics of the system.

Fermi Gas: I

Fermionic gases obey the Pauli Exclusion Principle and cannot condense.

Fermi Gas: I

Fermionic gases obey the Pauli Exclusion Principle and cannot condense.

Fermi Pressure

$$
{ }^{6} L i=\text { Fermion }
$$

b

$T=810 \mathrm{nk}$

${ }^{7} L i=$ Boson

Fermi Gas: II

Given $\left\{\phi_{i}\right\}_{i=1}^{M}$ orthonormal set in $L^{2}\left(\mathbb{R}^{d}\right)$ we can construct Slater determinants

$$
\Psi_{M}\left(x_{1}, \ldots, x_{M}\right):=\frac{1}{\sqrt{M!}} \operatorname{det}_{i, j}\left(\phi_{i}\left(x_{j}\right)\right) \in L_{a}^{2}\left(\mathbb{R}^{d M}\right)
$$

which are good approximations of the ground state of a weakly interacting fermionic gas.

Fermi Gas: II

Given $\left\{\phi_{i}\right\}_{i=1}^{M}$ orthonormal set in $L^{2}\left(\mathbb{R}^{d}\right)$ we can construct Slater determinants

$$
\Psi_{M}\left(x_{1}, \ldots, x_{M}\right):=\frac{1}{\sqrt{M!}} \operatorname{det}_{i, j}\left(\phi_{i}\left(x_{j}\right)\right) \in L_{a}^{2}\left(\mathbb{R}^{d M}\right)
$$

which are good approximations of the ground state of a weakly interacting fermionic gas.

Their first marginal can be checked to be

$$
\gamma_{M}=\sum_{i=1}^{M}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
$$

Schrödinger \rightarrow Hartree-Fock

For large M, physcists expect solutions of the Hartree-Fock equation

$$
\left\{\begin{array}{l}
i \hbar \partial_{t} \omega(t)=\left[\frac{-\hbar^{2}}{2 m} \Delta+V * \rho(t)-X(t), \omega(t)\right] \\
\rho(t, x)=M^{-1} \omega(t ; x, x) \\
\omega(0)=\omega_{0} \in \mathscr{L}^{2}\left(L^{2}\left(\mathbb{R}^{d}\right)\right) \text { with } \operatorname{Tr} \omega_{0}=M
\end{array}\right.
$$

to approximate the Schrodinger evolution of $\gamma_{M}(t)$ under the Hamiltonian

$$
H_{M}:=\frac{-\hbar^{2}}{2 m} \sum_{i=1}^{M} \Delta_{x_{i}}+\frac{1}{M} \sum_{i, j=1}^{M} V\left(x_{i}-x_{j}\right)
$$

Schrödinger \rightarrow Hartree-Fock

For $\hbar=1$ regime:
\triangleright [Bardos, Golse, Gottlieb, Mauser '03] regular interactions
\triangleright [Frölich, Knowles '11] Coulomb interactions
For $\hbar=M^{-1 / d}$ regime:
\triangleright [Elgart, Erdös, Schlein, Yau '04] for analytic potentials
\triangleright [Benedikter, Porta, Schlein '14] with rates using Second Quantization
\triangleright [Benedikter, Porta, Schlein '14] relativistic
\triangleright [Benedikter Jakšić, Porta, Saffirio, Schlein '16] for mixed states
\triangleright Porta Radamacher, Saffirio, Schlein '17] for Coulomb
\triangleright [Fresta, Porta, Schlein '23] for high density

Hartree-Fock \rightarrow Vlasov

By considering a "macroscopic/semiclassical regime" where $\hbar=M^{-1 / d}$ solutions of Hartree-Fock behave like solutions of the Vlasov equation:

$$
\left\{\begin{array}{l}
\left(\partial_{t}+p \cdot \nabla_{x}+F_{f}(t) \cdot \nabla_{p}\right) f(t, x, p)=0 \\
F_{f}(t, x)=-\int \nabla V(x-y) f(t, y, p) d y d p
\end{array}\right.
$$

Hartree-Fock \rightarrow Vlasov

By considering a "macroscopic/semiclassical regime" where $\hbar=M^{-1 / d}$ solutions of Hartree-Fock behave like solutions of the Vlasov equation:

$$
\left\{\begin{array}{l}
\left(\partial_{t}+p \cdot \nabla_{x}+F_{f}(t) \cdot \nabla_{p}\right) f(t, x, p)=0 \\
F_{f}(t, x)=-\int \nabla V(x-y) f(t, y, p) d y d p
\end{array}\right.
$$

\triangleright [Narnhofer, Sewell '81] [Spohn '81] first results (Schrödinger to Vlasov)
\triangleright [Lions, Paul '93], [Markowich, Mauser '93], [Gasser, Illner, Markowich '98] Hartree-Fock to Vlasov
\triangleright [Athanassoulis, Paul, Pezzotti, Pulverenti '11] improved convergence
\triangleright [Benedikter, Porta, Saffiro, Schlein '16] quantitative convergence for discontinuous initial data

Bose-Fermi Mixtures: Physics

Investigating degenerate mixtures of bosons and fermions is an extremely active area of research for understanding novel quantum bound states (e.g. superconductors, superfluids, and supersolids).
A

Bose-Fermi Mixtures: Mathematics

Define the Hamiltonian and phase space for N bosons and M fermions:

$$
\begin{gathered}
\mathscr{H}:=L_{s}^{2}\left(\mathbb{R}^{d N}\right) \otimes L_{a}^{2}\left(\mathbb{R}^{d M}\right) \\
H:=\frac{\hbar^{2}}{2 m_{F}} \sum_{i=1}^{M}\left(-\Delta_{x_{i}}\right) \otimes \mathbb{1}+\frac{\hbar^{2}}{2 m_{B}} \sum_{j=1}^{N} \mathbb{1} \otimes\left(-\Delta_{y_{j}}\right)+\lambda \sum_{i, j=1}^{N, M} V\left(x_{i}-y_{j}\right)
\end{gathered}
$$

Bose-Fermi Mixtures: Mathematics

Define the Hamiltonian and phase space for N bosons and M fermions:

$$
\begin{gathered}
\mathscr{H}:=L_{s}^{2}\left(\mathbb{R}^{d N}\right) \otimes L_{a}^{2}\left(\mathbb{R}^{d M}\right) \\
H:=\frac{\hbar^{2}}{2 m_{F}} \sum_{i=1}^{M}\left(-\Delta_{x_{i}}\right) \otimes \mathbb{1}+\frac{\hbar^{2}}{2 m_{B}} \sum_{j=1}^{N} \mathbb{1} \otimes\left(-\Delta_{y_{j}}\right)+\lambda \sum_{i, j=1}^{N, M} V\left(x_{i}-y_{j}\right)
\end{gathered}
$$

Our question: How do we obtain an effective description of Schrödinger's equation for large N, M ?

Theorem 1: Deriving an Effective Description

Let γ_{B}, γ_{F} be the bosonic and fermionic marginals, and consider (ω, ψ) solutions to the Hartree-Hartree equation

$$
\left\{\begin{array}{l}
i \hbar \partial_{t} \omega=\left[-\left(\hbar^{2} / 2 m_{F}\right) \Delta+\lambda N\left(V * \rho_{B}\right), \omega\right] \tag{1}\\
i \hbar \partial_{t} \psi=-\left(\hbar^{2} / 2 m_{B}\right) \Delta \psi+\lambda M\left(V * \rho_{F}\right) \psi
\end{array} .\right.
$$

Theorem (Informal)

Under low temperature and propagation of semi-classical structure assumptions, we have

$$
\begin{aligned}
\frac{1}{M}\left\|\gamma_{F}(t)-\omega(t)\right\|_{T_{r}} & \leq \frac{C}{\sqrt{M}} \exp \left[C \lambda \sqrt{\frac{N M}{\hbar}}\left(1+\sqrt{\frac{\hbar M}{N}}\right) \exp |t|\right] \\
\frac{1}{N} \| \gamma_{B}(t)-N|\psi(t)\rangle\langle\psi(t)| \|_{T_{r}} & \leq \frac{C}{\sqrt{N}} \exp \left[C \lambda \sqrt{\frac{N M}{\hbar}}\left(1+\sqrt{\frac{\hbar M}{N}}\right) \exp |t|\right]
\end{aligned}
$$

Theorem 1: Proof ideas

We use the language and tools of Second Quantization over a bosonic and fermionic Fock space to study the fluctuation dynamics:

$$
\mathscr{F}:=\bigoplus_{N=1}^{\infty} L_{s}^{2}\left(\mathbb{R}^{d N}\right) \otimes \bigoplus_{M=1}^{\infty} L_{a}^{2}\left(\mathbb{R}^{d M}\right)
$$

The main difficulties and novelties were:

- The identification of a scaling window,
- Controlling products of the bosonic and fermionic number operators when analyzing the fluctuation dynamics.

Theorem 2: Scaling and Vlasov-Hartree

From Theorem 1, we identified a scaling regime

$$
\begin{equation*}
\lambda=\frac{1}{N}, \quad \hbar=\frac{1}{M^{\frac{1}{d}}}, \quad m_{B}=\hbar, \quad m_{F}=1 \quad \text { and } \quad N=M^{1+\frac{1}{d}} \tag{2}
\end{equation*}
$$

Theorem 2: Scaling and Vlasov-Hartree

From Theorem 1, we identified a scaling regime

$$
\begin{equation*}
\lambda=\frac{1}{N}, \quad \hbar=\frac{1}{M^{\frac{1}{d}}}, \quad m_{B}=\hbar, \quad m_{F}=1 \quad \text { and } \quad N=M^{1+\frac{1}{d}} \tag{2}
\end{equation*}
$$

Now consider the Vlasov-Hartree

$$
\left\{\begin{array}{l}
\left(\partial_{t}+p \cdot \nabla_{x}+F_{B}(t, x) \cdot \nabla_{p}\right) f=0 \tag{3}\\
i \partial_{t} \psi=-\frac{1}{2} \Delta \psi+\left(V * \rho_{F}\right) \psi \\
(f, \psi)(0)=\left(f_{0}, \psi_{0}\right) \in L_{+}^{1}\left(\mathbb{R}^{2 d}\right) \times L^{2}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

Theorem 2: Convergence

Given a marginal $\omega \in \mathscr{L}^{1}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$, define the Wigner transform by

$$
\begin{equation*}
W^{\hbar}[\omega](x, p):=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} \omega\left(x+\frac{y}{2}, x-\frac{y}{2}\right) e^{-i \frac{v \cdot p}{\hbar}} d y \tag{4}
\end{equation*}
$$

Theorem (Informal)

Let $\left(\omega_{0}^{\hbar}, \psi_{0}^{\hbar}\right)$ be an admissible family of initial data for the Hartree-Hartree equation with

$$
W^{\hbar}\left[\omega_{0}^{\hbar}\right] \rightarrow f_{0}, \quad \text { and } \quad \psi_{0}^{\hbar} \rightarrow \psi_{0} \quad \text { as } \hbar \rightarrow 0 .
$$

Let $\left(\omega^{\hbar}(t), \psi^{\hbar}(t)\right)$ be the solutions of the Hartree-Hartree equation and $(f(t), \psi(t))$ be solutions of the Vlasov-Hartree equation with respect to the scaling (2). Then we obtain (with estimates)

$$
W^{\hbar}\left[\omega^{\hbar}\right](t) \rightarrow f(t), \quad \text { and } \quad \psi^{\hbar}(t) \rightarrow \psi(t) \quad \text { as } \hbar \rightarrow 0 .
$$

Future Directions

- What about the ground state problem? What about other scaling regimes?
- Can anything interesting be said about the Vlasov-NLS system?

$$
\left\{\begin{array}{l}
\left(\partial_{t}+p \cdot \nabla_{x}+F_{B}(t, x) \cdot \nabla_{p}+F_{f}(t, x) \cdot \nabla_{p}\right) f=0 \\
i \partial_{t} \psi=-\frac{1}{2} \Delta \psi+\left(V * \rho_{F}\right) \psi+|\psi|^{2} \psi
\end{array}\right.
$$

Thanks!

Thank you!

References for Figures

(1) Figure 1: M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269(5221): 198-201, 1995.
(2) Figure 2-4: D. Jin. A Fermi Gas of Atoms. Physics World, 2002.
(3) Figure 5: I. Ferrier-Barbut et al. A mixture of Bose and Fermi superfluids. Science, 345: 1035-1038, 2014.

