Strichartz estimates for the Schrödinger equation on negatively curved compact manifolds.

Xiaoqi Huang

Louisiana State University

Feb 10, 2024

Texas Analysis and Mathematical Physics Symposium

Compact boundaryless Riemannian manifold (M^d, g) of dimension $d \ge 2$. The associated Laplace-Beltrami Operator, Δ_g , of the form

$$|g|^{1/2} \sum_{j,k=1}^{d} \partial_j (|g|^{1/2} g^{jk}(x)) \partial_k, \quad |g| = \det g_{jk}(x), \ (g^{jk}) = (g_{jk})^{-1}.$$

The Laplace-Beltrami Operator is self-adjoint. Additionally, the spectrum of $-\Delta_g$ is discrete. We often denote $0 = \lambda_0^2 < \lambda_1^2 \le \lambda_2^2 \le \lambda_3^2 \le \ldots$ for the ordered sequence of eigenvalues, repeated according to multiplicity.

Let

$$u(x,t) = \left(e^{-it\Delta_g}u_0\right)(x)$$

be the solution of the Schrödinger equation on $M^d imes \mathbb{R}$,

$$i\partial_t u(x,t) = \Delta_g u(x,t), \quad u(x,0) = u_0(x).$$

Let

$$u(x,t) = \left(e^{-it\Delta_g}u_0\right)(x)$$

be the solution of the Schrödinger equation on $M^d imes \mathbb{R}$,

$$i\partial_t u(x,t) = \Delta_g u(x,t), \quad u(x,0) = u_0(x).$$

• Interested in the space time estimate $||u||_{L_t^p L_x^q(M^d \times [0,1])}$, where

$$\|u\|_{L^{p}_{t}L^{q}_{x}(M^{d}\times[0,1])} = \left(\int_{0}^{1} \|u(\cdot,t)\|^{p}_{L^{q}_{x}(M^{d})} dt\right)^{1/p}$$

The Euclidean case

In \mathbb{R}^d ,

$$u(x) = (e^{-it\Delta}u_0)(x) = \int e^{2\pi i \langle x-y,\xi \rangle} e^{it|\xi|^2} \widehat{u}_0(\xi) d\xi$$
$$= \frac{1}{(4\pi it)^{d/2}} \int e^{-i\frac{|x-y|^2}{4t}} u_0(y) dy$$

We have the mixed-norm Strichartz estimates

$$\|u\|_{L^p_t L^q_x(\mathbb{R}^d \times \mathbb{R})} \lesssim \|u_0\|_{L^2(\mathbb{R}^d)}$$

for all *admissible* pairs (p, q) satisfying

$$d(rac{1}{2}-rac{1}{q})=rac{2}{p}$$
 and $2 < q \leq rac{2d}{d-2}$ if $d \geq 3$, or $2 < q < \infty$ if $d=2$.

Strichartz 1977, Ginibre-Velo 1992, Keel-Tao 1998

The Strichartz estimate in \mathbb{R}^d follows from

$$\|u(\cdot,t)\|_{L^\infty} \leq rac{C}{t^{d/2}} \|u_0\|_{L^1}, ext{ the dispersive estimate}$$

as well as

$$||u(\cdot,t)||_{L^2} = ||u_0||_{L^2}$$

• On compact manifolds we do not have the dispersive estimate, even for small time *t*, e.g., by letting $u_0 = e_{\lambda}$ with $\lambda \to \infty$.

Burq, Gérard and Tzvetkov 2004: Let M^d be a $d \ge 2$ dimensional compact manifold. Then for all *admissible* pairs (p, q),

$$\|u\|_{L^p_t L^q_x(M^d \times [0,1])} \lesssim \|u_0\|_{H^{1/p}(M^d)}.$$

- The *admissible* pairs (p, q) are the same as in the Euclidean space
- H^{μ} denotes the standard Sobolev space

$$\|f\|_{H^{\mu}(M^d)} = \|(I+P)^{\mu}f\|_{L^2(M^d)}, \text{ with } P = \sqrt{-\Delta_g},$$

• On compact manifold, one can not replace [0,1] by \mathbb{R} by letting

$$u(x,t)=e^{it\lambda^2}e_\lambda(x)$$

where

$$-\Delta_g e_\lambda = \lambda^2 e_\lambda$$

is an eigenfunction of the the Laplacian.

• For the endpoint Strichartz estimates where p = 2 and $q = \frac{2d}{d-2}$ with $d \ge 3$, the 1/2 derivative loss in the Strichartz estimate is sharp by letting $u = Z_{\lambda}$, the zonal eigenfunctions on S^d with eigenvalue $\lambda = (k(k+d-1))^{1/2}$, $k = 1, 2, \ldots$, since

$$\|Z_{\lambda}\|_{L^{\frac{2d}{d-2}}(S^d)}/\|Z_{\lambda}\|_{L^2(S^d)} \approx \lambda^{1/2}$$

- Can we improve the Strichartz estimate for non-endpoint pairs (p, q)?
- For the endpoint pair p = 2 and $q = \frac{2d}{d-2}$, can we get an improvement under certain geometric assumptions?

Theorem 1 (Huang–Sogge 2024).

Let M^d be a $d \ge 2$ dimensional compact manifold all of whose sectional curvatures are nonpositive. Then for all admissible pairs (p, q),

 $\|u\|_{L^p_t L^q_x(M^d \times [0,1])} \lesssim \left\| (I+P)^{1/p} \left(\log(2I+P) \right)^{-\frac{1}{p}} f \right\|_{L^2(M^d)}.$

The results of Burq, Gérard and Tzvetkov 2004 from the uniform bounds

$$\|e^{-it\Delta_g}\beta(P/\lambda)f\|_{L^p_tL^q_x(M^d\times[0,1])}\leq C\lambda^{\frac{1}{p}}\,\|f\|_{L^2(M^d)},\quad\lambda\gg 1.$$

The authors proved this estimate by showing that one always has the following uniform dyadic estimates over very small intervals:

$$\|e^{-it\Delta_g}\beta(P/\lambda)f\|_{L^p_tL^q_x(M^d\times[0,\lambda^{-1}])}\leq C\,\|f\|_{L^2(M^d)},\quad \lambda\gg 1.$$

• This implies the above estimates by diving the interval [0,1] into $\approx \lambda$ many smaller intervals of size λ^{-1} , $[j\lambda^{-1}, (j+1)\lambda^{-1}]$, and use the fact that $e^{-i\cdot j\lambda^{-1}\Delta_g}$ is unitary on L^2 .

When $t \leq \lambda^{-1}$, Burq, Gérard and Tzvetkov showed the following dispersive type estimate

$$\|e^{-it\Delta_g}eta(P/\lambda)f\|_{L^\infty_x(M^d)}\leq C|t|^{-d/2}\,\|f\|_{L^1(M^d)},\quad |t|\leq\lambda^{-1}.$$

• This was proved using parametrix construction, when $t \leq \lambda^{-1}$, $e^{-it\Delta_g}\beta(P/\lambda)$ behaves like the half wave operator $e^{it'\sqrt{-\Delta_g}}\beta(P/\lambda)$ with $t' \leq 1$

- If $t' = \lambda t \lesssim 1$, by using WKB approximation or Hadamard parametrix, we have $e^{it'\lambda^{-1}\Delta_g}(x,y) \approx \int e^{i\langle x-y,\xi\rangle} e^{it'\lambda^{-1}|\xi|^2} \beta(|\xi|/\lambda) d\xi$
- This implies the decay estimates at scale $t' \lesssim 1$ by stationary phase argument.

In an ongoing work with Sogge, for manifolds with non-positive curvature, we obtain

$$\|e^{-it\Delta_g}\beta(P/\lambda)f\|_{L^p_tL^q_x(M^d\times[0,\lambda^{-1}\log\lambda])}\leq C\,\|f\|_{L^2(M^d)},\quad\lambda\gg 1.$$

- This implies the results in the theorem by adding up the disjoint intervals.
- Unlike the general case, we do not have analogous dispersive estimate at scale $t \leq \lambda^{-1} \log \lambda$

$$\begin{split} \|e^{-it\Delta_g}\beta(P/\lambda)f\|_{L^p_t L^q_x(M^d\times[0,\lambda^{-1}\log\lambda])} \\ \lesssim \|A^\theta_\nu e^{-it\Delta_g}\beta(P/\lambda)f\|_{L^p_t \ell^q_\nu L^q_x(M^d\times[0,\lambda^{-1}\log\lambda])} + \text{good error.} \end{split}$$

• The A^{θ}_{ν} operators involves localizations in both space and frequency, as an analog of the wave packet in \mathbb{R}^{d} .

- If one view $\ell_{\nu}^{q}L^{q}$ norm as L^{q} norm on some Banach space X, the dispersive estimate holds on the new space X, due to the extra directional localization.
- This is proved using bilinear oscillatory integral estimate of Lee 2006.

The Schrödinger tubes

The Euclidean case

The flat tori

On the torus, or more generally flat manifold,

$$\|e^{-it\Delta_g}\beta(P/\lambda)f\|_{L^p_t L^q_x(M^d\times[0,\lambda^{-1+\delta_d}])} \leq C \|f\|_{L^2(M^d)}, \quad \lambda \gg 1,$$

for some small δ_d depend on the dimension.

For the standard torus $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ and $q = \frac{2(d+2)}{d}$, Bourgain Demeter 2014.

$$\|e^{-it\Delta_g}\beta(P/\lambda)f\|_{L^q_tL^q_x(\mathbb{T}^d\times[0,1])} \leq C_\varepsilon\lambda^\varepsilon \,\|f\|_{L^2(\mathbb{T}^d)}, \quad \text{for arbitrary small } \varepsilon.$$

• When d = 2, λ^{ε} loss is improved to $(\log \lambda)^{\frac{1}{4}}$ recently by Herr Kwak 2023.

• For irrational tori, [0,1] can be replaced by [0, T] and the dependence of C_{ε} on the constant T has been studied Deng, Germain Guth 2017.

On the round sphere S^d , it is possible to improve the Strichartz estimate for non-endpoint pairs (p, q) using the arithmetic properties of the spectrum. Burq, Gérard and Tzvetkov 2004

$$\|e^{-it\Delta_g}eta(P/\lambda)f\|_{L^4_tL^4_x(S^d imes [0,1])}\leq C\lambda^{s(d)}\,\|f\|_{L^2(S^d)},\quad\lambda\gg 1,$$

$$s(d) = \frac{d}{4} - \frac{1}{2}$$
 for $d \ge 3$, and $s(d) = \frac{1}{8}$, for $d = 2$.

- This is sharp in all dimensions by using spherical harmonics as test functions.
- The result also holds on Zoll manifolds, which share similar spectrum properties with S^d .

On the round sphere S^d ,

$$e^{-it\Delta_g}\beta(P/\lambda)f = \sum_k e^{itk(k+d-1)}\beta(|k|/\lambda)e_k(x),$$

Thus the Strichartz estimate is related to

$$\|\sum_{j\in\mathbb{Z}:|j|\approx\lambda}a_{j}e^{i\cdot j^{2}\theta}\|_{L^{q}(S^{1})}\leq C_{\varepsilon}\lambda^{2(\frac{1}{4}-\frac{1}{q})+\varepsilon}\|a_{j}\|_{\ell^{2}}.$$

• For q = 4, this is related to the lattice points on a circle, i.e., $j_1^2 + j_2^2 = \lambda^2$.

Thank you for your time!