Virtual levels and virtual states of linear operators in Banach spaces with Andrew Comech

Nabile Boussaïd

(Lm^B) Université de Franche-Comté

TexAMP 2023/24 Texas A&M University February 9–11, 2024

The limiting absorption principle

Let $\mathcal H$ be a Hilbert space and A a self-adjoint operator on $\mathcal H$

 $\sigma(A) \subset \mathbb{R}.$

Let ${\bf E}$ and ${\bf F}$ be Banach spaces such that:

 $\mathsf{E} \stackrel{\imath}{\longrightarrow} \mathcal{H} \stackrel{\jmath}{\longrightarrow} \mathsf{F}.$

The limiting absorption principle (LAP) for A holds at $\lambda \in \sigma(A)$ means that

$$\operatorname{w-lim}_{\epsilon \to 0+} (A - \lambda - \mathrm{i}\epsilon)^{-1}$$

exists in (weak operator topology of) $\mathscr{B}(\mathsf{E},\mathsf{F})$.

LAP and spectrum

Let $\lambda \in \sigma(A)$. If $\phi \in \mathbf{E}$ is such that $A\phi = \lambda \phi$ then for $\epsilon > 0$

$$(A - \lambda - i\epsilon)^{-1}\phi = \frac{i}{\epsilon}\phi.$$

If the LAP holds for A at λ then $\phi = 0$.

Assume LAP holds for A at λ . Let $B \in \mathscr{B}(\mathbf{F}, \mathbf{E})$ then if B is small enough

$$I_{\mathsf{E}} + B(A - \lambda - \mathrm{i}\epsilon)^{-1}$$

is invertible, for $\epsilon > 0$ small enough (and also at the limit $\epsilon = 0$). The inverse has a limit as $\epsilon \to 0+$. Therefore LAP holds for A + B at λ and A + B has no eigenvector associated with λ .

LAP and evolution

Consider $\mathbf{F} = \mathbf{E}^*$. Assume LAP holds for A at any point of an interval I and $C \in \mathscr{B}(\mathbf{F}, \mathcal{H})$ then

$$\int_{I} \|C\Im(A - \lambda - i\epsilon)^{-1}\phi\|^2 d\lambda \le \kappa \|\phi\|^2$$

where κ does not depend on $\epsilon>$ 0. By means of a Fourier transform in $\lambda,$ it leads to

$$\int_{\mathbb{R}} \|Ce^{-\mathrm{i}tA}\mathbb{1}_{I}(A)\phi\|^{2} \,\mathrm{d}t \leq \kappa \|\phi\|^{2}$$

LAP equivalent charaterization in the Schrödinger case

Consider the Schrödinger operator $A = -\Delta + V$, in \mathbb{R}^d , $d \ge 1$, with $V \in C_{\text{comp}}(\mathbb{R}^d)$.

The following properties seem related for $z_0 = 0$:

- 1. The equation $A\psi = z_0\psi$ has a nonzero solution from L^2 or from a certain larger space;
- 2. The resolvent $R(z) = (A zI)^{-1}$ has no limit in weighted spaces as $z \to z_0$;
- 3. Under some arbitrarily small perturbation, an eigenvalue can bifurcate from z_0 .

In this case $z_0 = 0$ is called a threshold resonance.

Thresholds resonances ~> virtual levels

Let **X** an infinite-dimensional complex Banach space. Let $A \in \mathscr{C}(\mathbf{X})$ a closed linear operator with dense domain D(A). Consider continuous embeddings (not necessarily dense)

$$\mathsf{E} \stackrel{\imath}{\longleftrightarrow} \mathsf{X} \stackrel{\jmath}{\longleftrightarrow} \mathsf{F}.$$

Let $\Omega \subset \mathbb{C} \setminus \sigma(A)$. Then $z_0 \in \sigma_{ess}(A) \cap \partial \Omega$ is a point of the essential spectrum of rank $r \in \mathbb{N}_0$ relative to $(\Omega, \mathbf{E}, \mathbf{F})$ if $r \in \mathbb{N}_0$ is the smallest integer with

- B of rank r;
- $\Omega \cap \sigma(A+B) \cap \mathbb{D}_{\delta}(z_0) = \emptyset$, $\delta > 0$;
- In $\mathscr{B}(\mathsf{E},\mathsf{F})$

$$(A+B-z_0I_{\mathbf{X}})_{\Omega,\mathbf{E},\mathbf{F}}^{-1}:= \underset{z\to z_0, z\in\Omega\cap\mathbb{D}_{\delta}(z_0)}{\operatorname{w-lim}} \mathfrak{I}\circ (A+B-zI_{\mathbf{X}})^{-1}\circ \mathfrak{I}$$

If r > 0, z_0 is a virtual level.

Main assumption

The operator A, considered as a mapping $\mathbf{F} \rightarrow \mathbf{F}$,

 $D(A_{\mathbf{F}\to\mathbf{F}}) := j(D(A)), \qquad A_{\mathbf{F}\to\mathbf{F}} : \Psi \mapsto j(Aj^{-1}(\Psi)),$

is closable in $\mathbf{F} \rightsquigarrow$ closure $\hat{A} \in \mathscr{C}(\mathbf{F})$.

Lemma

If LAP holds at z_0 (r = 0) relative to ($\Omega, \mathbf{E}, \mathbf{F}$), then the limit $(A - z_0 l_{\mathbf{X}})_{\Omega, \mathbf{E}, \mathbf{F}}^{-1}$ is invertible with closed inverse α such that

$$j \circ i \circ \alpha = (\hat{A} - z_0 I_{\mathsf{F}}) \upharpoonright_{\operatorname{Ran}((A - z_0 I_{\mathsf{X}})_{\Omega,\mathsf{E},\mathsf{F}})}$$

Main assumption

The operator A, considered as a mapping $\mathbf{F} \rightarrow \mathbf{F}$,

 $D(A_{\mathbf{F}\to\mathbf{F}}) := j(D(A)), \qquad A_{\mathbf{F}\to\mathbf{F}} : \Psi \mapsto j(Aj^{-1}(\Psi)),$

is closable in $\mathbf{F} \rightsquigarrow$ closure $\hat{A} \in \mathscr{C}(\mathbf{F})$.

Lemma

If LAP holds at z_0 (r = 0) relative to ($\Omega, \mathbf{E}, \mathbf{F}$), then the limit $(A - z_0 l_{\mathbf{X}})_{\Omega, \mathbf{E}, \mathbf{F}}^{-1}$ is invertible with closed inverse α such that

$$j \circ i \circ \alpha = (\hat{A} - z_0 I_{\mathsf{F}}) \upharpoonright_{\operatorname{Ran}((A - z_0 I_{\mathsf{X}})_{\Omega,\mathsf{E},\mathsf{F}})}$$

If LAP does not hold (z_0 of rank r > 0), does it mean that the equation $(\hat{A} - z_0)\psi = 0$ has a nontrivial solution $\psi \in \mathbf{F}$?

Some notations

Let $\mathcal{B} \in \mathscr{C}(\mathbf{F}, \mathbf{E})$ a closed operator and $B := \imath \circ \mathcal{B} \circ \jmath \in \mathscr{C}(\mathbf{X})$ and $\hat{B} := \jmath \circ \imath \circ \mathcal{B} \in \mathscr{C}(\mathbf{F}).$ If $\mathcal{B} \in \mathscr{B}_0(\mathrm{D}(\hat{A}), \mathbf{E})$ (\hat{A} -compact) then $B \in \mathscr{B}_0(\mathrm{D}(A), \mathbf{X})$ and $\hat{B} \in \mathscr{B}_0(\mathrm{D}(\hat{A}), \mathbf{F}).$

Moreover, if A satisfies the main assumption then A + B also satisfies the main assumption (closure is $\hat{A} + \hat{B}$).

Beside A satisfies the main assumption, assume LAP at z_0 holds for A w.r.t. to $(\Omega, \mathbf{E}, \mathbf{F})$.

Let $\mathcal{B} \in \mathscr{B}_0(D(\hat{A}), \mathbf{E})$, does LAP at z_0 holds for A + B w.r.t. to $(\Omega, \mathbf{E}, \mathbf{F})$?

Equivalent characterizations of virtual levels

Theorem

The following statements are equivalent:

 There is no nonzero solution to (Â + B̂ - z₀ l_F)Ψ = 0, Ψ ∈ Ran((A - z₀ l_X)⁻¹_{Ω,E,F});
 -1 ∉ σ(B(A - z₀ l_X)⁻¹_{Ω,E,F});
 -1 ∉ σ_p((A - z₀ l_X)⁻¹_{Ω,E,F}B);
 There is δ > 0 such that Ω ∩ D_δ(z₀) ⊂ C \ σ(A + B), and there exists a limit in ℬ(E, F)

$$(A+B-z_0I_{\mathbf{X}})_{\Omega,\mathbf{E},\mathbf{F}}^{-1} = \operatorname{w-lim}_{z \to z_0, \, z \in \Omega \cap \mathbb{D}_{\delta}(z_0)} j \circ (A+B-zI_{\mathbf{X}})^{-1} \circ i;$$

There is δ > 0 such that Ω ∩ D_δ(z₀) ⊂ C \ σ(A + B), and the mapping j ∘ (A + B − zl_X)⁻¹ ∘ i : E → F is uniformly bounded in z ∈ Ω ∩ D_δ(z₀).

Sketched proof

These equivalences are based on properties of Fredholm operators.

1, 2, and 3 are equivalent due to

$$\hat{A} + \hat{B} - z_0 I_{\mathbf{F}} = \left(I_{\mathbf{F}} + \mathcal{B} (A - z_0 I_{\mathbf{X}})_{\Omega, \mathbf{E}, \mathbf{F}}^{-1} \right) \left(\hat{A} - z_0 I_{\mathbf{F}} \right)$$
$$= \left(\hat{A} - z_0 I_{\mathbf{F}} \right) \left(I_{\mathbf{E}} + (A - z_0 I_{\mathbf{X}})_{\Omega, \mathbf{E}, \mathbf{F}}^{-1} \mathcal{B} \right)$$

2 is equivalent to 4 (and 5) follows from the identity for $z \in \Omega$

$$A + B - zl_{\mathbf{X}} = \left(l_{\mathbf{X}} + B(A - zl_{\mathbf{X}})^{-1}\right)(A - zl_{\mathbf{X}})$$

so that it is enough to have that $(I_{\mathbf{X}} + B(A - zI_{\mathbf{X}})^{-1})$ is invertible and the inverse has a limit as $z \to z_0$ iff $-1 \notin \sigma (\mathcal{B}(A - z_0I_{\mathbf{X}})^{-1}_{\Omega, \mathbf{E}, \mathbf{F}})$. Relatively compact instead of finite rank perturbations

Assume z_0 is a virtual level of A (of rank $r \ge 1$) relative to $(\Omega, \mathbf{E}, \mathbf{F})$.

Definition (Relatively compact regularizing operators) $\mathscr{Q}_{\Omega,\mathbf{E},\mathbf{F}}(A - z_0 h_{\mathbf{X}}) :=$

$$\left\{\begin{array}{ll} \mathcal{B}: \mathbf{F} \to \mathbf{E} \text{ is } \hat{A}\text{-compact}, & \Omega \subset \mathbb{C} \setminus \sigma_{\mathrm{ess}}(A+B), \\ \exists \underset{z \to z_0, \, z \in \Omega}{\text{w-lim}} \, \jmath \circ (A+B-zl_{\mathbf{X}})^{-1} \circ \imath : \, \mathbf{E} \to \mathbf{F} \end{array}\right\}.$$

Compact to finite rank operators

Lemma

For any $\mathcal{B} \in \mathscr{Q}_{\Omega, \mathbf{E}, \mathbf{F}}(A - z_0 I_{\mathbf{X}})$ and the Riesz projection $P_1 \in \mathscr{B}_{00}(\mathbf{E})$ (finite rank) onto the generalized eigenspace corresponding to eigenvalue $\lambda = 1$ of the operator

$$K = \mathcal{B}(A + B - z_0 I_{\mathbf{X}})_{\Omega, \mathbf{E}, \mathbf{F}}^{-1} \in \mathscr{B}_0(\mathbf{E}),$$

there is the inclusion

$$P_1 \circ \mathcal{B} \in \mathscr{Q}_{\Omega, \mathbf{E}, \mathbf{F}}(A - z_0 I_{\mathbf{X}}).$$

Lemma

Assume that $\mathcal{B} \in \mathscr{Q}_{\Omega,\mathsf{E},\mathsf{F}}(A - z_0 l_{\mathsf{X}})$ and $\operatorname{rank} \mathcal{B} < \infty$. For any projection $Q \in \mathscr{B}_{00}(\mathsf{F})$ onto $(A + B - z_0 l)_{\Omega,\mathsf{E},\mathsf{F}}^{-1}\operatorname{Ran}(\mathcal{B}) \subset \mathsf{F}$, one has:

$$\mathcal{B} \circ Q \in \mathscr{Q}_{\Omega, \mathsf{E}, \mathsf{F}}(A - z_0 I_{\mathsf{X}}) \cap \mathscr{B}_{00}(\mathsf{F}, \mathsf{E}).$$

 $\mathscr{Q}_{\Omega,\mathbf{E},\mathbf{F}}(A-z_0 l_{\mathbf{X}})$ is "dense" and "open"

Lemma

If $\mathcal{B} \in \mathscr{Q}_{\Omega,\mathbf{E},\mathbf{F}}(A - z_0 I_{\mathbf{X}})$, then there is $\epsilon > 0$ such that for all $\zeta \in \mathbb{D}_{\epsilon} \setminus \{0\}$ LAP holds at z_0 for $A + \zeta B$, relative to $(\Omega, \mathbf{E}, \mathbf{F})$.

Lemma

If $\mathcal{B} \in \mathscr{Q}_{\Omega,\mathsf{E},\mathsf{F}}(A - z_0 l_{\mathsf{X}})$ and $\mathcal{C} : \mathsf{F} \to \mathsf{E}$ is \hat{A} -compact with

$$\sup_{z\in\Omega\cap\mathbb{D}_{\delta}(z_{0})}\|\mathcal{C}\circ\jmath\circ(A+B-zI_{\mathbf{X}})^{-1}\circ\imath\|_{\mathbf{E}\rightarrow\mathbf{E}}<1,$$

with some $\delta > 0$, then

$$\Omega \cap \mathbb{D}_{\delta}(z_0) \subset \mathbb{C} \setminus \sigma(A + B + C),$$

with $C := \iota \circ C \circ \jmath : \mathbf{X} \to \mathbf{X}$, and LAP holds at z_0 for A + B + C, relative to $(\Omega, \mathbf{E}, \mathbf{F})$.

The space of virtual states

The space of virtual states $\mathfrak{M}_{\Omega,\mathbf{E},\mathbf{F}}(A - z_0 I_{\mathbf{X}})$ is

$$\left\{\Psi\in\operatorname{Ran}\left((A+B-z_0I_{\mathbf{X}})_{\varOmega,\mathbf{E},\mathbf{F}}^{-1}
ight),\,(\hat{A}-z_0I_{\mathbf{F}})\Psi=0
ight\}$$

where $\mathcal{B} \in \mathscr{Q}_{\Omega, \mathbf{E}, \mathbf{F}}(A - z_0 I_{\mathbf{X}})$.

Theorem

The spaces $\operatorname{Ran}((A + B - z_0 I_{\mathbf{X}})_{\Omega,\mathbf{E},\mathbf{F}}^{-1})$ and $\mathfrak{M}_{\Omega,\mathbf{E},\mathbf{F}}(A - z_0 I_{\mathbf{X}})$ do not depend on the choice of $\mathcal{B} \in \mathscr{Q}_{\Omega,\mathbf{E},\mathbf{F}}(A - z_0 I_{\mathbf{X}})$;

Let $r := \min\{\operatorname{rank}\mathcal{B}, \mathcal{B} \in \mathscr{Q}_{\Omega, \mathsf{E}, \mathsf{F}}(\mathsf{A} - z_0 l_{\mathsf{X}})\} < \infty$, one has

$$\dim \mathfrak{M}_{\Omega,\mathbf{E},\mathbf{F}}(A-z_0 I_{\mathbf{X}})=r.$$

Schrödinger in dimension d = 1

The resolvent of $-\Delta$ is singular at $z_0 = 0$ as the resolvent kernel is

$$R_0(x,y;z)=\frac{e^{i|x-y|\sqrt{z}}}{2i\sqrt{z}},$$

for $z \in \mathbb{C} \setminus \overline{\mathbb{R}_+}$, and where $\Im \sqrt{z} > 0$.

- There is a singularity at $z \rightarrow z_0 = 0$ which is an obstruction to a LAP in this framework.
- This singularity disappears under a well chosen perturbation (next two/three slides).

Here $\textbf{X}=\mathcal{H}=L^2(\mathbb{R})$ and for E and F we consider spaces of the form

$$L^p_s(\mathbb{R}^d) = \left\{ u \in L^p_{\text{loc}}(\mathbb{R}^d); \, \langle x \rangle^s u \in L^p(\mathbb{R}^d) \right\}$$

for $1 \leq p \leq \infty$ and $s \in \mathbb{R}$.

Schrödinger operators with decaying potentials in $L^2(\mathbb{R})$ Virtual levels and LAP estimates

Theorem

Let V be a measurable function on \mathbb{R} such that $\langle x \rangle V \in L^1(\mathbb{R})$. There is the following dichotomy:

1. Either

$$R_V(z) = (-\Delta + V - zI)^{-1}, \qquad z \in \mathbb{C} \setminus \sigma(-\Delta + V)$$

is uniformly bounded as a mapping $L^2_{s_1}(\mathbb{R}) \to L^2_{-s_2}(\mathbb{R})$ for some $s_1, s_2 > 1/2, s_1 + s_2 \ge 2$, for $z \in \mathbb{D}_{\delta} \setminus \overline{\mathbb{R}_+}$ with some $\delta > 0$.

2. Or there is a nontrivial solution to

$$(-\Delta+V)\Psi=0,\qquad \Psi\in L^\infty(\mathbb{R})\cap H^2_{\mathrm{loc}}(\mathbb{R}).$$

A remark when LAP holds

When the first alternative holds:

$$R_V(z) = (-\Delta + V - zI)^{-1}, \qquad z \in \mathbb{C} \setminus \sigma(-\Delta + V)$$

is uniformly bounded as a mapping $L^2_{s_1}(\mathbb{R}) \to L^2_{-s_2}(\mathbb{R})$ for some $s_1, s_2 > 1/2, s_1 + s_2 \ge 2$, for $z \in \mathbb{D}_{\delta} \setminus \overline{\mathbb{R}_+}$ with some $\delta > 0$. Then $R_V(z)$ has a limit as $z \to z_0 = 0, z \in \mathbb{C} \setminus (-\Delta + V)$

- 1. In the strong operator topology of $\mathscr{B}(L^2_s(\mathbb{R}), L^2_{-s'}(\mathbb{R}))$ for all pairs of s, s' such that $s, s' > 1/2, s + s' \ge 2$ (in the uniform operator topology if s + s' > 2);
- 2. In the weak^{*} operator topology of $\mathscr{B}(L^{1}_{\varsigma}(\mathbb{R}), L^{\infty}_{\varsigma-1}(\mathbb{R}))$, $0 \leq \varsigma \leq 1$.

A condition for the LAP

Lemma

Let V be a real-valued nonnegative locally L^2 -integrable function on \mathbb{R} .

- 1. If V is not identically zero, then there is no nontrivial solution to $(-\Delta + V)\Psi = 0$ such that $\Psi \in L^2_{-1}(\mathbb{R})$.
- 2. If, moreover, V is compactly supported and $s' \leq 3/2$, then there is no nontrivial solution to $(-\Delta + V)\Psi = 0$ such that $\Psi \in L^2_{-s'}(\mathbb{R})$.

"General" Schrödinger operators in $L^2(\mathbb{R})$ virtual levels and LAP estimates

Theorem

- Let $s_1, \, s_2 > 1/2$, $s_1 + s_2 \geq 2$, $s_2 \leq 3/2$,
- And assume that $W : L^2_{-s_2}(\mathbb{R}) \to L^2_{s_1}(\mathbb{R})$ is Δ -compact (with Δ considered in $L^2_{-s_2}(\mathbb{R})$).

There is the following dichotomy:

- 1. Either $R_W(z) = (-\Delta + W zI)^{-1}$, $z \in \mathbb{C} \setminus \sigma(-\Delta + W)$ is bounded as a mapping $L^2_{s_1}(\mathbb{R}) \to L^2_{-s_2}(\mathbb{R})$ uniformly in $z \in \mathbb{D}_{\delta} \setminus \overline{\mathbb{R}_+}$ with some $\delta > 0$;
- 2. Or there is a nontrivial solution to $(-\Delta + W)\Psi = 0$, $\Psi \in L^2_{-s_2}(\mathbb{R}).$